UT to Rush Fork Stream Mitigation Project Year 2 (2023) Monitoring Report FINAL

DMS Project ID No. 100068, DEQ Contract No. 7535 RFP# 16-007335 (Issued 9/8/17)

USACE Action ID No. SAW-2018-01171, DWR# 2018-1034 Haywood County, North Carolina, French Broad River Basin: 06010106 MY2 Data Collection Period: May – November 2023

Submitted to/Prepared for: NC Department of Environmental Quality Division of Mitigation Services (DMS) 1652 Mail Service Center Raleigh, North Carolina 27699-1652

Michael Baker

Submission Date: January 2024

This document was printed using 30% recycled paper.

January 19, 2023

Paul Wiesner, PM NCDEQ, Division of Mitigation Services Asheville Regional Office 2090 U.S. 70 Highway Swannanoa, NC 28778-8211

Subject:

Response to DMS Comments (January 3, 2024) for DRAFT Monitoring Year 2 Report. UT to Rush Fork Stream Mitigation Project French Broad River Basin: 06010106 DMS Project #100068 DEQ Contract #7535

Dear Mr. Wiesner,

Please find below our responses to the NC Division of Mitigation Services (DMS) review comments dated January 3, 2024, in reference to the UT to Rush Fork Stream Mitigation Project's DRAFT Monitoring Year 2 Report. We have revised the Draft document in response to review comments as outlined below.

- General: Feral hog damage was reported in MY1 (2022). Was any additional feral hog damage noted in MY2 (2023)? Please update the report text accordingly.
 RESPONSE: No feral hog damage was noted during MY2 (2023). The report text has been updated as requested.
- During the April 19, 2023, IRT Credit Release meeting, Baker reported that some supplemental planting was conducted on the site and would be reported in MY2 (2023). Please report any supplemental planting efforts completed in MY2 (2023) in the report text and Table 2 (Project Activity and Reporting History). Please also include a map of the supplementally planted area/s and a species list as an Appendix in the final MY2 (2023) report. The planting list should include a wetness tolerance column for each species planted (FACW; FAC; FACU; etc.).

RESPONSE: A small number of stems were planted in March 2023. This information has been added to the report text and Table 2. A shapefile showing the approximate extent of the planted area has been added to the CCPV's and the electronic submittal and a planting list including a wetness tolerance has been added to Table 7 Vegetation Plot Data in Appendix C as requested.

• Section 1.4 Monitoring Results and Project Performance: *"Baker will send an email and letter to the property owner to notify the farmer who leases the field that this is in violation of the terms of the conservation easement. Baker will work with the property owner and farmer to create a path for equipment, so this violation does not occur in the future."* Please include a copy of the email and a signed copy of the landowner notification letter in an Appendix of the revised MY2 (2023) report.

RESPONSE: A copy of the email and I signed copy of the landowner notification letter has been added in Appendix F *Correspondence* as requested.

• Section 1.4 Monitoring Results and Project Performance: "These VPAs and other areas observed low density will be supplementally planted before the growing season begins in April of 2024 (MY3) at a rate of 200 stems per acre." What supplemental plant species are

proposed? Please consider planted stem diversity when selecting species for the MY3 (2024) supplemental planting effort. If the proposed species vary from the planting list in the IRT approved mitigation plan, the IRT should be consulted through DMS. Table 6 indicates that the low stem density areas represent 5.5% of the site, so an Adaptive Management Plan (AMP) does not appear to be warranted. Please include a map of the supplementally planted area/s and a species list as an Appendix in next year's MY3 (2024) report. The planting list should include a wetness tolerance column for each species planted (FACW; FAC; FACU; etc.). RESPONSE: Species selected for planting in MY3 (2024) will partially depend on nursery availability; however, and effort will be made to procure a diverse group of species which are also included from the planting list on the approved mitigation plan. Planted areas will be

mapped and reported on in the MY3 report as requested.

- Current Condition Plan View (CCPV) Maps: Since the VPAs reported are all low stem density areas, DMS recommends updating the map legend to Low Stem Density Areas.
 RESPONSE: The map legend has been updated as requested.
- Table 5 & Table 6: Please include the assessment date/s at the top of each table. The date is provided for some reaches but not all.
 RESPONSE: The assessment dates have been added to each reach as requested.
- Bankfull Events & Crest Gauge graphs: Please review and confirm that the graphs and data presented are accurate. It is difficult to determine how the provided crest gauge data correlates with the provided rainfall data; no rain gauge data is provided for the one (1) bankfull event reported in MY3 (2023). Many times, the crest gauge data falls well below the stream bed elevation. Please consider using a different color for the streambed elevation line. Lastly, Gauge is misspelled in the legend for Crest Gauge #2.

RESPONSE: After further evaluation we believe that the bankfull event reported on 12-23-2022 was an erroneous reading as there is no corroborating rain or flow data. This has been called out on the graph and deleted as an event in Table 10. Crest gauge data prior to the relocation of the gauges to in-stream should be disregarded as there were no events recorded and the graph is inaccurate prior to 5-10-2023 based on streambed and bankfull elevation lines. We also believe there may have been a malfunction with the site BARO as both the crest gauges and the flow gauges data takes the same sharp downward trend in late June 2023. This trend falls well below the streambed elevation in most cases which is not possible in reality. Baker staff will download and replace the BARO if necessary, early in MY3. Lastly, the spelling error and the streambed elevation line have been revised as requested.

Table 11: Please update the report so the table and CCPV maps are synonymous. The CCPV maps report FL-1; FL-2; FL-3. Table 11 reports RF1; RF2; RF3.
 RESPONSE: The CCPV maps have been changed to be consistent as requested.

Digital Support File Comments:

 Please include stream survey station IDs in the revised files and in all future submissions; station ID examples are TLB, THW etc.
 RESPONSE: Stream survey station IDs have been added to the 04 Geomorphology Data folder in the eSubmission Files (Reference_Reach_Survey_DL_MY2_UT Rush Fork - Normal Method_REV and Rush Fork_Yearly Xsecs_AnnualSummary) as requested. As requested, Michael Baker has provided an electronic response letter addressing the DMS comments received and two (2) hardcopies of the FINAL report, and the updated e-submission digital files will be sent via secure ftp link. A full final electronic copy with electronic support files have been included on a USB drive. Please do not hesitate to contact me (Jason.york@mbakerintl.com 828-412-6101) should you have any questions regarding our response submittal.

Sincerely,

Jason York Environmental Scientist

Enclosure: Final MY2 Report UT to Rush Fork Stream Mitigation Project

TABLE OF CONTENTS

1.0	PROJECT SUMMARY	3
1.1	Project Description	3
	GOALS AND OBJECTIVES	
1.3	Project Success Criteria	4
1.4	MONITORING RESULTS AND PROJECT PERFORMANCE	4
1.5	TECHNICAL AND METHODOLOGICAL DESCRIPTIONS	5
1.6	References	5

APPENDICES

Appendix	Α	Background Table	es and	l Figures
		Figure	1	Project Vicinity Map
		Figure	2	Project Asset and Credit Map
		Table	1	Project Mitigation Quantities and Credits
		Table	2	Project Activity and Reporting History
		Table	3	Project Contacts
		Table	4	Project Baseline Information and Attributes
Appendix	В	Visual Assessment	t Data	1
		Figure	3	Current Condition Plan View (CCPV) Map
		Table	5	Visual Stream Morphology Stability Assessment
		Table	6	Vegetation Condition Assessment
		Stream Station Ph	oto-P	oints
		Vegetation Plot Pl	-	-
		Monitoring Gauge	es and	Overbank Photographs
Annendix	C	Vegetation Plot D	ata	
Appendix	С	<i>Vegetation Plot D</i> Table	ata 7	Vegetation Plot Data
Appendix Appendix	C D	-	7	-
		Table	7	-
		Table Stream Geomorph	7 nology	Data Cross-Sections with Annual Overlay Baseline Stream Data Summary
		Table Stream Geomorph Figure	7 nology 4	Data Cross-Sections with Annual Overlay
		Table Stream Geomorph Figure Table	7 nology 4 8	<i>Data</i> Cross-Sections with Annual Overlay Baseline Stream Data Summary Cross-Section Morphology Data
Appendix	D	Table Stream Geomorph Figure Table Table	7 nology 4 8	<i>Data</i> Cross-Sections with Annual Overlay Baseline Stream Data Summary Cross-Section Morphology Data
Appendix	D	TableStream GeomorphFigureTableTableHydrologic Data	7 eology 4 8 9	 Data Cross-Sections with Annual Overlay Baseline Stream Data Summary Cross-Section Morphology Data Summary Verification of Bankfull Events Flow Gauge Graphs
Appendix	D	TableStream GeomorphFigureTableTableHydrologic DataTable	7 2000gy 4 8 9 10	<i>Data</i> Cross-Sections with Annual Overlay Baseline Stream Data Summary Cross-Section Morphology Data Summary Verification of Bankfull Events
Appendix	D	Table Stream Geomorph Figure Table Table Hydrologic Data Table Figure	7 2000gy 4 8 9 10 5	 Data Cross-Sections with Annual Overlay Baseline Stream Data Summary Cross-Section Morphology Data Summary Verification of Bankfull Events Flow Gauge Graphs Observed Rainfall Versus Historic

1.0 PROJECT SUMMARY

1.1 Project Description

Michael Baker Engineering, Inc. (Michael Baker) restored approximately 2,843.58 linear feet and enhanced an additional 1,179.54 linear feet of stream along seven reaches on unnamed tributaries (UT) to Rush Fork Creek. Additionally, 0.996 uncredited acres of adjacent riparian wetlands will be enhanced and protected within the project conservation easement. The project lies within the French Broad River Basin, Hydrologic Unit Code (HUC) 06010106-020010 (Pigeon River/Crabtree Creek Watershed), which is identified as a Targeted Local Watershed (TLW) in the NC Division of Mitigation Services' (DMS 2009) *French Broad River Basin Restoration Priorities* (RBRP) report. The project is located in the Blue Ridge Physiographic Region, within the Southern Crystalline and Mountains Level IV ecoregion. The project watershed drains into Rush Fork Creek, which flows for approximately 2.8 miles to its confluence with Crabtree Creek and then continues for approximately 0.7 miles to the Pigeon River. These streams are designated as Class C waters by the surface water classification system of the NC Division of Water Resources (DWR).

The UT to Rush Fork Stream Mitigation Project (project) is located on two adjacent parcels of an active cattle farm in Haywood County, North Carolina, halfway between the unincorporated communities of Crabtree and Fines Creek as shown on the Project Vicinity Map (Figure 1). The project site entrance is 5.9 miles north on Route 209 from exit 24 off of I-40, on the right at 9503 Rush Fork Road. Coordinates for the approximate center of the project are 35.644607 N Latitude, -82.940170 W Longitude. Current agricultural use on the project site is predominantly livestock pasture; however, other current uses include forest and hay production. Past uses may have included row crops and apple production. These activities negatively impacted both water quality and streambank stability along the project stream reaches. The observed functional stressors include streambank erosion, sedimentation, excess nutrient input, channel modification, and the loss of riparian buffers.

The project is being conducted as part of the DMS Full Delivery In-Lieu Fee Program and is anticipated to generate a total of 3,533.610 cold-water stream mitigation credits and the site is protected by an 8.26-acre permanent conservation easement (Appendix B).

1.2 Goals and Objectives

The goals of this project are identified below:

- Reconnect stream reaches to their floodplains,
- Improve stream stability,
- Improve aquatic habitat,
- Reestablish forested riparian buffers, and
- Permanently protect the project in a conservation easement.

To accomplish these goals, the following objectives were identified:

- To restore appropriate bankfull dimensions, and/or raise channel beds, by utilizing either a Priority I Restoration approach or an Enhancement Level I approach.
- Stabilize eroding channel banks and arrest incision by utilizing an Enhancement Level II approach.

- To construct streams of appropriate dimensions, pattern, and profile in restored reaches, slope stream banks and provide bankfull benches on enhanced reaches and utilize bio-engineering to provide long-term stability.
- Construct the correct channel morphology along all stream channels, increasing the number and depth of pools utilizing structures including geo-lifts with brush toe, log vanes/weirs, root wads, and/or J-hooks.
- Establish riparian buffers at a 30-foot minimum width along all stream reaches, planted with native tree and shrub species.
- Establish a permanent conservation easement restricting land use in perpetuity. This will prevent site disturbance and allow the project to mature and stabilize.

1.3 Project Success Criteria

The success criteria and performance standards for the project will follow the NCDMS's template As-Built Baseline Monitoring Report Format, Data Requirements, and Content Guidance (October 2020), and the Annual Monitoring Report Format, Data Requirements, and Content Guidance (October 2020), and as described in Section 7 of the approved Mitigation Plan. All specific monitoring activities will follow those outlined in detail in Section 8 of the approved Mitigation Plan and will be conducted for a period of 7 years.

1.4 Monitoring Results and Project Performance

The Year 2 monitoring survey data from the eighteen permanent cross-sections indicates that these stream transects are geomorphically stable, both laterally and vertically, and in-stream structures are performing as designed. All reaches are stable and performing as designed and are rated at 100 percent for all the parameters evaluated (Table 5 in Appendix B). There were no Stream Problem Areas (SPAs) identified.

A minor Encroachment Area was observed during the completion of MY2 monitoring where a piece of farm equipment was driven through an unfenced portion of the easement on the right floodplain of UT1-R4 (shown on CCPV Figure 3C). It appears the equipment could not fit between the Conservation Easement boundary and the tree line. The area was not mowed and did not sustain any permanent damage. Baker has sent email and letter to the property owner to notify the farmer who leases the field that this is in violation of the terms of the conservation easement. This correspondence is included in Appendix F. Baker will work with the property owner and farmer to create a path for equipment, so this violation does not occur in the future.

Approximately 30 1-gallon stems were planted prior to the growing season during MY2 on the right floodplain of UT3 (CCPV Figure 3A). All planted species were included on the planting list from the approved mitigation plan. During Year 2 monitoring, the planted acreage showed low stem density in many parts of the project. The average density of total planted stems, based on data collected from the 6 permanent and 1 random monitoring plots for the Year 2 monitoring conducted in October 2023 was 294 stems per acre (Table 7 in Appendix C). Thus, the Year 2 vegetation data demonstrate that the Site is not on track to meet the minimum success interim criteria of 320 trees per acre by the end of Year 3. Four vegetation problem areas (VPAs) were identified due to low stem density, although only one exceeds the reportable mapping threshold of 0.1 acres. These VPAs and other areas of observed low density will be supplementally planted before the growing season begins in April of 2024 (MY3) at a rate of 200 stems per acre. Areas with low stem density have a high density of fescue which was treated with herbicide during MY2. Additional herbicide treatment of fescue will continue during the spring of 2024. Apparent feral hog damage that was reported during MY1 did not continue to be an issue during MY2 so no further action was taken.

During Year 2 monitoring, no post-construction bankfull events were observed (see Table 10 in Appendix E).

As the observed monthly rainfall data for the project presented in Figure 6, (Appendix E) demonstrates the total monthly rainfall has varied widely from the historic average precipitation. In an annual comparison the site experienced similar average annual rainfall during the monitoring year at 50.58 inches observed for the project site comparable to the county's 49.72 inches of rainfall. Observed project rainfall was collected from the North Carolina Climate Office Weather Climate Database Legacy system. This system uses a Multi-Sensor Precipitation Estimate (MPE) to combine radar-based precipitation values with surface gauges to generate site specific data based on project coordinates. The closest weather station (WAYN) is located approximately 11.4 miles southwest of the project at the Mountain Research Station on Test Farm Rd. in Waynesville, NC. Three automated channel flow gauges exceeded the minimum 30-day performance criteria during MY2. Summary information/data related to the Site and statistics related to performance of various project and monitoring elements can be found in the tables and figures in the report Appendices.

Narrative background and supporting information formerly found in these reports can be found in the Baseline Monitoring Report and in the Mitigation Plan available on the DMS website. Any raw data supporting the tables and figures in the Appendices is available from DMS upon request.

This report documents the successful completion of the Year 2 monitoring activities for the postconstruction monitoring period.

1.5 Technical and Methodological Descriptions

Stream survey data was collected to a minimum of Class C Vertical and Class A Horizontal Accuracy using a Leica TS06 Total Station and was georeferenced to the NAD83 State Plane Coordinate System, FIPS3200 in US Survey Feet, which was derived from the As-built Survey. The survey data from the permanent project cross-sections were collected and classified using the Rosgen Stream Classification System to confirm design stream type (Rosgen 1994).

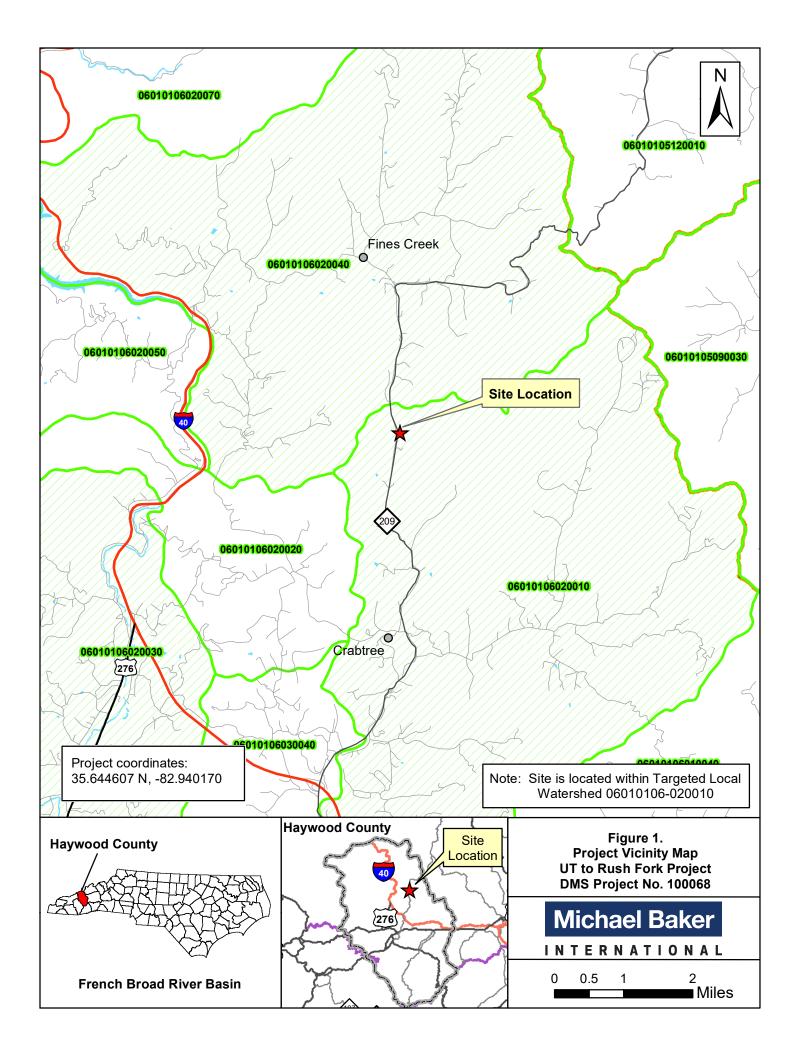
The six permanent vegetation-monitoring quadrants (plots) were installed across the site in accordance with the CVS-DMS Protocol for Recording Vegetation, Version 4.1 (Lee 2007) and the data collected from each was input into the DMS Veg Table Production Tool (2021).

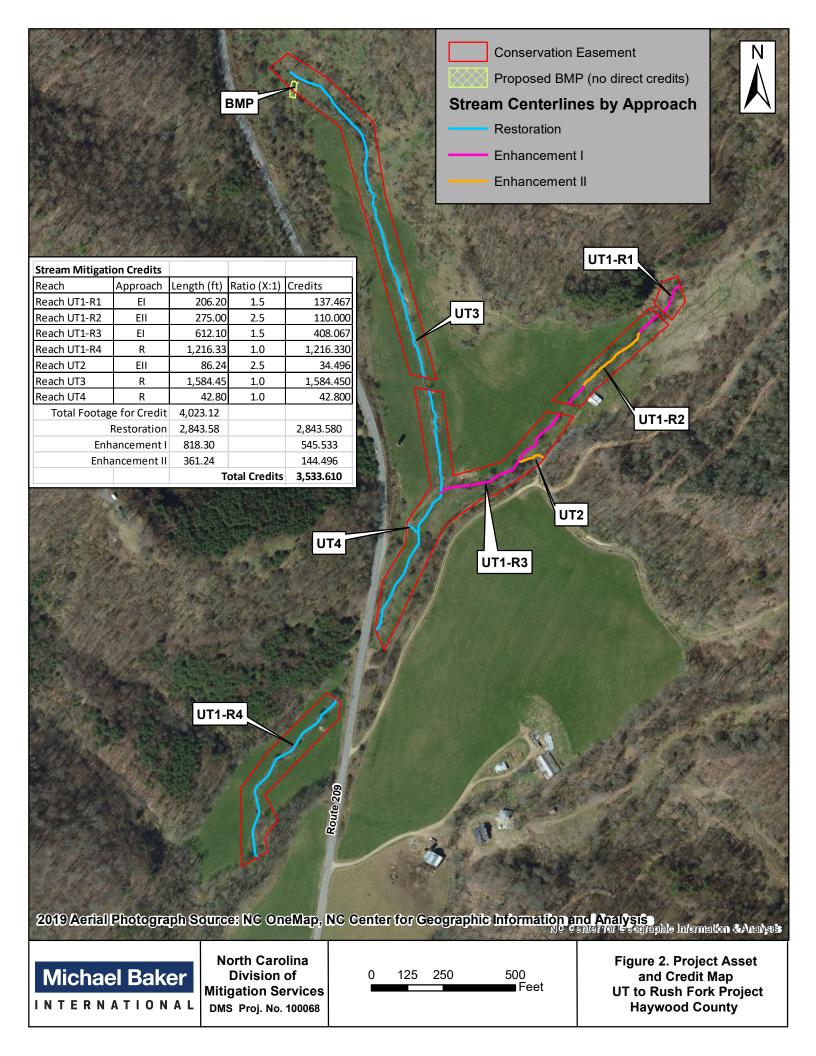
All of the crest gauges and flow gauges are Van Essen brand Baro-Diver data loggers.

All observed project rainfall was collected from the North Carolina Climate Office Weather Climate Database Legacy system.

The specific locations of monitoring features, such as vegetation plots, permanent cross-sections, reference photograph stations, and crest gauges, are shown on the CCPV map found in Appendix B.

1.6 References


- Carolina Vegetation Survey (CVS) and NC Division of Mitigation Services (DMS). CVS-DMS Protocol for Recording Vegetation, Version 4.1 (Lee 2007), DMS Veg Table Production Tool (2021)
- Lee, M., Peet R., Roberts, S., Wentworth, T. 2007. CVS-DMS Protocol for Recording Vegetation, Version 4.1.
- North Carolina Division of Mitigation Services. 2020. Annual Monitoring Report Format, Data Requirements, and Content Guidance October 2020. NC Department of Environmental Quality. Raleigh, NC.


North Carolina Interagency Review Team (NCIRT). 2020. Guidance document "Wilmington District Stream and Wetland Compensatory Mitigation Update". October 24, 2016

Rosgen, D.L. 1994. A Classification of Natural Rivers. Catena 22:169-199.

APPENDIX A

Background Tables and Figures

Table 1. Project Mitigation Quantities and Credits

Project Segment	Original Mitigation Plan* Ft/Ac	As-Built Ft/Ac	Original Mitigation Category	Original Restoration Level	Original Mitigation Ratio (X:1)	Credits
Stream						
Reach UT1-R1	206.20	206.410	Cold	EI	1.5	137.467
Reach UT1-R2	275.00	275.000	Cold	EII	2.5	110.000
Reach UT1-R3	612.10	600.860	Cold	EI	1.5	408.067
Reach UT1-R4	1,216.33	1,224.370	Cold	R	1.0	1,216.330
Reach UT2	86.24	78.160	Cold	EII	2.5	34.496
Reach UT3	1,584.45	1,577.530	Cold	R	1.0	1,584.450
Reach UT4	42.80	41.900	Cold	R	1.0	42.800
					Total:	3,533.610
Wetland						
N/A	0.996	0.996	-	E	-	-

Project Credits

Restoration Level	Stream			Riparian	Non-Rip	Coastal
	Warm	Cool	Cold	Wetland	Wetland	Marsh
Restoration	-	-	2,843.580	-	-	-
Re-establishment				-	-	-
Rehabilitation				-	-	-
Enhancement				-	-	-
Enhancement I	-	-	545.534			
Enhancement II	-	-	144.496			
Creation				-	-	-
Preservation	-	-	-	-	-	
Totals			2 522 610			

_ Total:

N/A

Totals

3,533.610

Table 2. Project Activity and Reporting History	
UT to Rush Fork Stream Mitigation Project - NCDMS Project No. 100	068

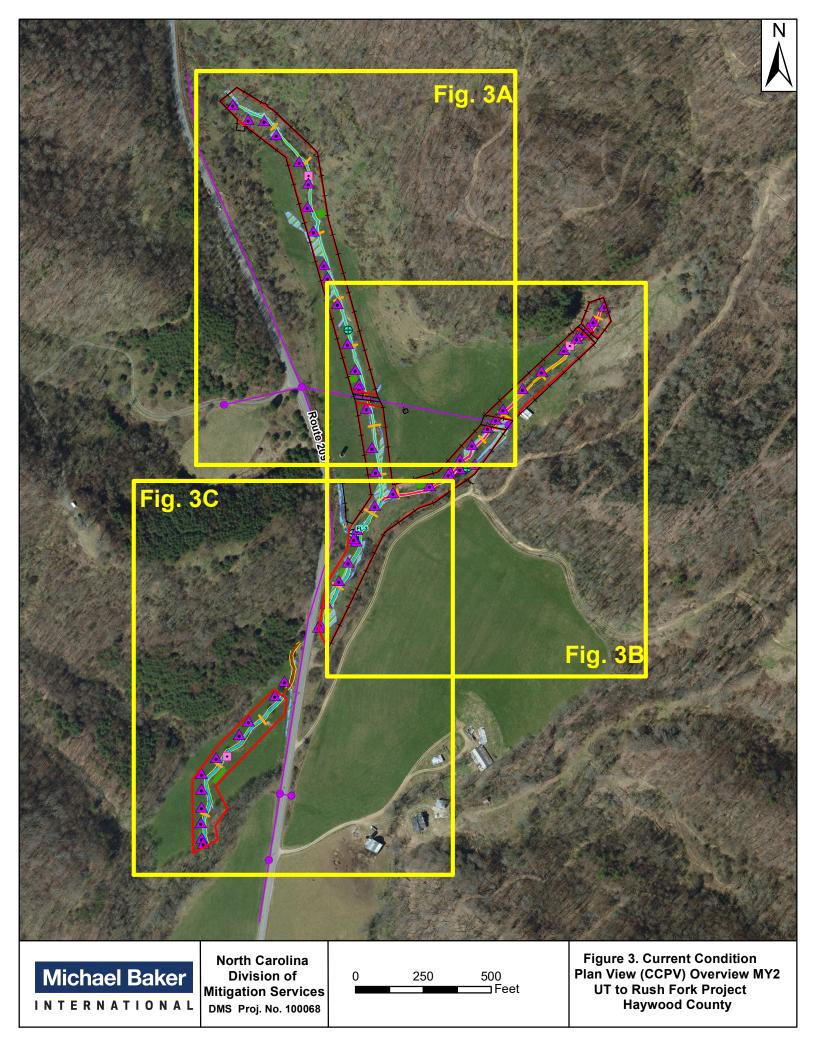
Grading Completed in	Feb-22	
Elapsed Time Since grading complete:	23 months	
All Planting Completed in	Feb-22	
Elapsed Time Since planting complete:	23 months	
Number of Reporting Years ¹ :	2	
Activity or Deliverable	Data Collection Complete	Completion or Delivery
Institution date	N/A	April 2018
404 permit date	N/A	April 2021
Mitigation Plan	N/A	April 2021
Final Design – Construction Plans	N/A	February 2022
Construction Grading Completed	N/A	February 2022
As-Built Survey	March 2022	August 2022
Livestake and Bareroot Planting Completed	February 2022	N/A
As-Built Stream Survey	March 2022	N/A
As-Built Vegetation Monitoring	March 2022	N/A
As-Built Baseline Monitoring Report (MY0)	March 2022	August 2022
Year 1 Monitoring		
Year 1 Stream Survey	November 2022	N/A
Year 1 Vegetation Monitoring	November 2022	N/A
Monitoring Year 1 Report (MY1)	December 2022	January 2023
Year 2 Monitoring	Novemberr 2023	December 2023
Supplemental Planting	N/A	March 2023
Invasive Vegetation Treatment	N/A	May 2023
Year 2 Stream Survey	November 2023	N/A
Year 2 Vegetation Monitoring	October 2023	N/A
Year 3 Monitoring (anticipated)	December 2024	December 2024
Year 4 Monitoring (anticipated)	December 2025	December 2025
Year 5 Monitoring (anticipated)	December 2026	December 2026
Year 6 Monitoring (anticipoated)	December 2027	December 2027
Year 7 Monitoring (anticipated)	December 2028	December 2028

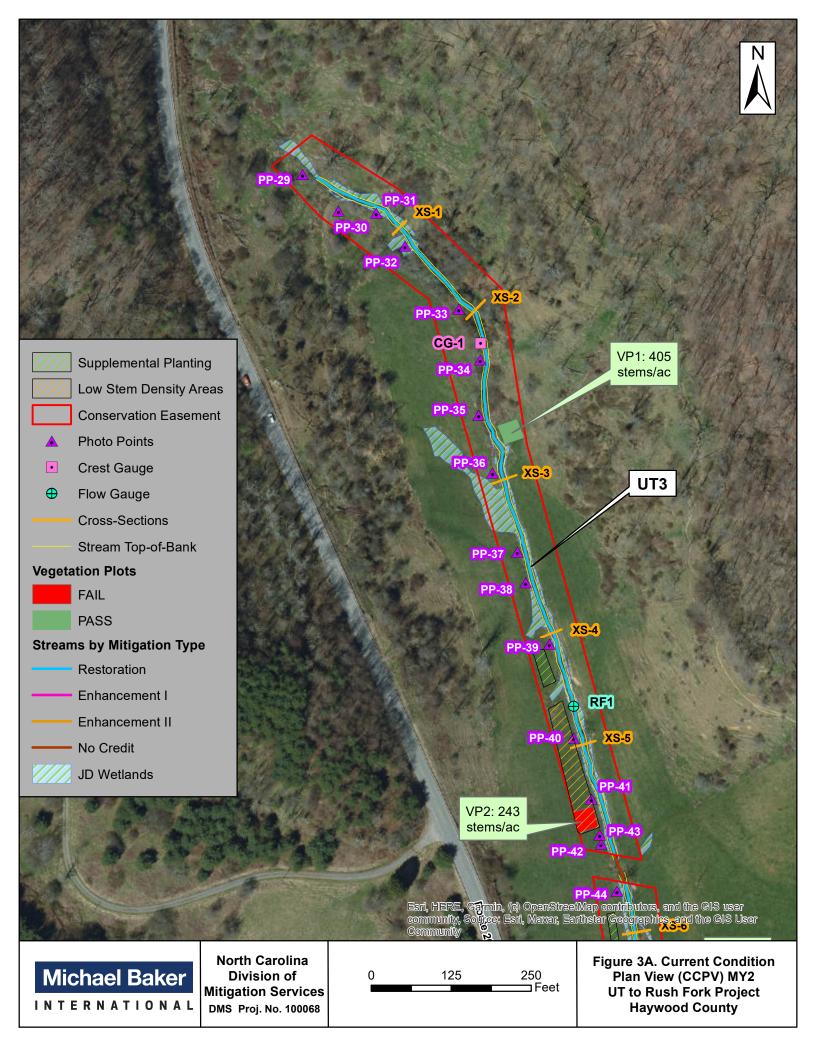
 1 = The number of monitoring reports excluding the as-built/baseline report

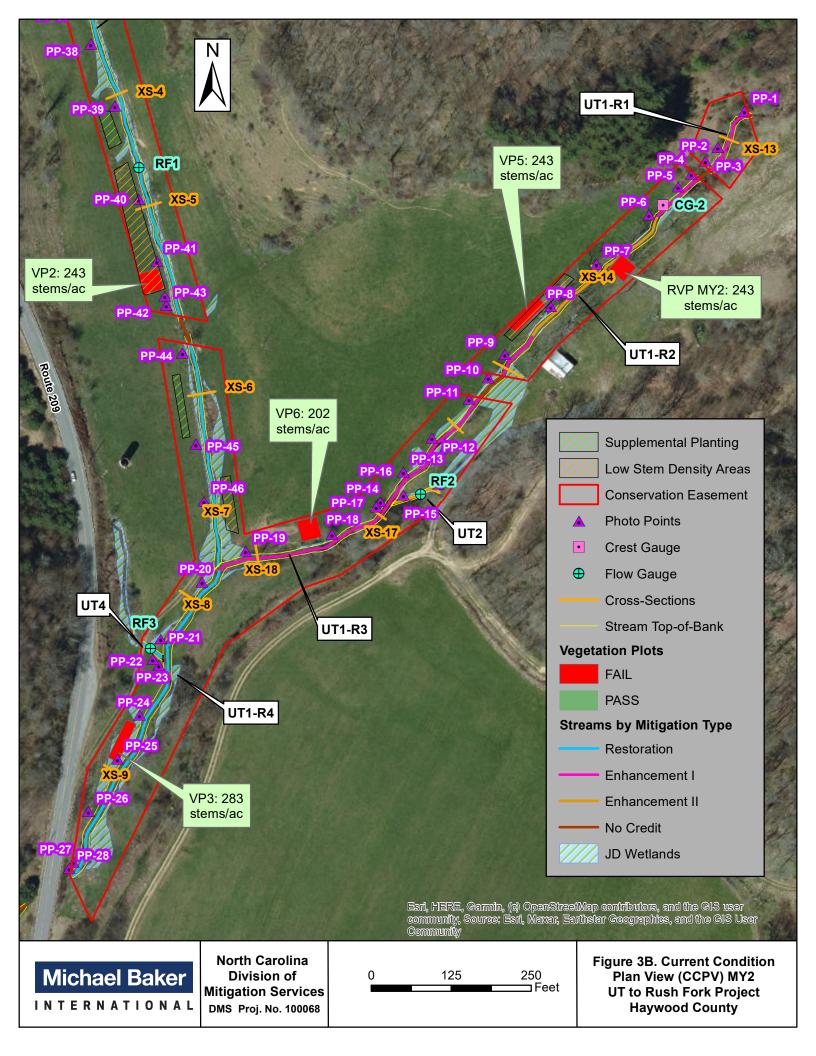
Table 3. Project Contacts
UT to Rush Fork Stream Mitigation Project - NCDMS Project No. 100068

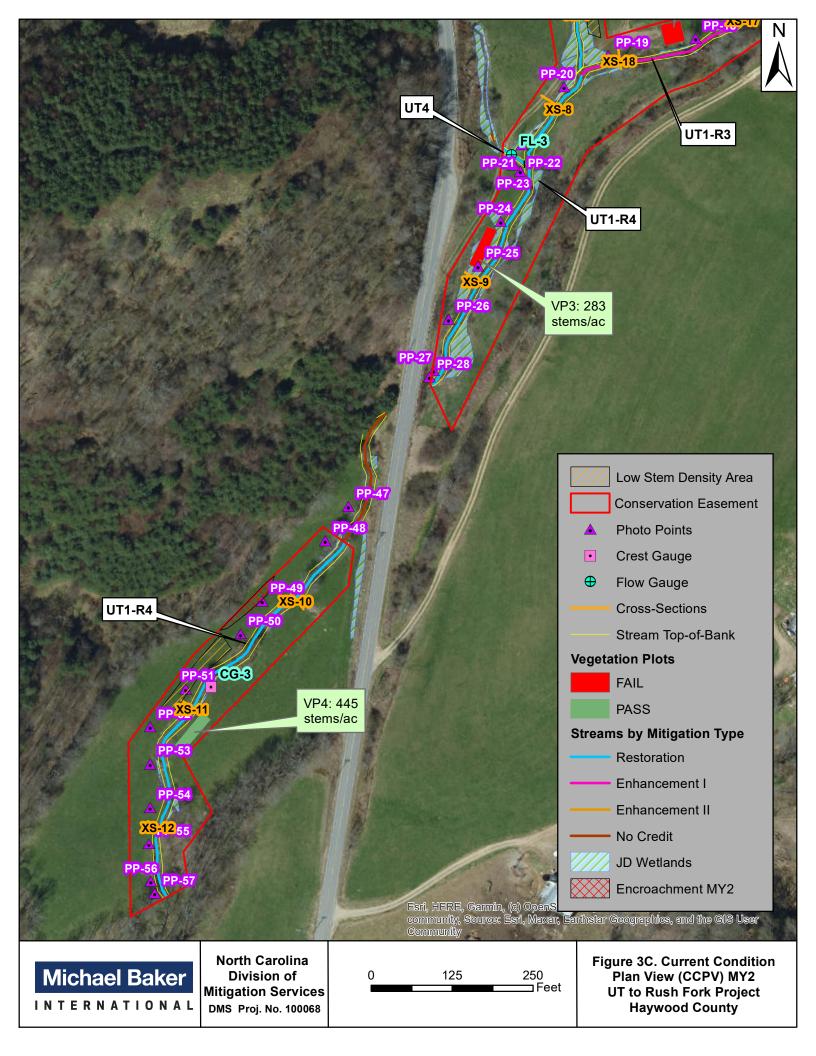
Designer	
Michael Baker Engineering, Inc.	8000 Regency Parkway, Suite 600 Cary, NC 27518 Contact: Katie McKeithan, Tel. 919-481-5703
Construction Contractor	
Baker Grading & Landscaping, Inc.	1000 Bat Cave Road, Old Fort, NC 28762 Contact: Charles Baker, Tel. 828-668-5060 x. 11
Survey Contractor	
Kee Mapping and Surveying	88 Central Avenue Asheville, NC 28801 Contact: Brad Kee, Tel. 828-575-9021
Planting Contractor	
Baker Grading & Landscaping, Inc.	1000 Bat Cave Road, Old Fort, NC 28762 Contact: Charles Baker, Tel. 828-668-5060 x. 11
Seeding Contractor	
Baker Grading & Landscaping, Inc.	1000 Bat Cave Road, Old Fort, NC 28762 Contact: Charles Baker, Tel. 828-668-5060 x. 11
Seed Mix Sources	
Roundstone Native Seed, LLC	9764 Raider Hollow Road, Upton, KY 42784 Telephone: 270-531-3034
Nursery Stock Suppliers	
Foggy Mountain Nursery (livestakes)	797 Helton Creek Road, Lansing, NC 28643 Telephone: 336-384-5323
Dykes and Son Nursery	825 Maude Etter Road, McMinnville, TN 37110 Telephone: 843-528- 3204
Monitoring Performers	
Michael Baker Engineering, Inc.	797 Haywood Rd. Suite 201 Asheville, NC 28806
Stream Monitoring POC	Jason York, Tel. 828-380-0118
Vegetation Monitoring POC	Jason York, Tel. 828-380-0118

MICHAEL BAKER ENGINEERING, INC. UT to RUSH FORK MITIGATION PROJECT (DMS #100068) YEAR 2 MONITORING REPORT


Table 4. Project Baseline Information and AttributesUT to Rush Fork Stream Mitigation Project - NCDMS Project No. 100068


	ect Background In			
roject Name	U	Γ to Rush Fork Strea	m Mitigation Project	et
County		Haywood	l County	
roject Area (acres)		8.2	.6	
roject Coordinates (latitude and longitude)		35.644607 N, -	82.940170 W	
lanted Acreage (Acres of Woody Stems Planted)		7.	3	
hermal Regime		COI	LD	
Project Wate	ershed Summary Inf	ormation		
hysiographic Province	·	Blue F	Ridge	
iver Basin		French	-	
				0.01.0
JSGS Hydrologic Unit 8-digit 6010106	USGS Hydrologic Ur	nit 14-digit	06010106-02	20010
WR Sub-basin		04-03	3-05	
roject Drainage Area (Acres and Square Miles)	308 acres	s/0.48 square miles (at downstream end	of UT1)
roject Drainage Area Percentage of Impervious Area		0.18% impe	rvious area	
GIA Land Use Classification	79.8% forested	17.1% hay/pasture,	and 2.9% developed	(open space)
	Summary Informat		ana 2.978 aeveroped	a (open space).
Parameters	UT1	UT2	UT3	UT4
ength of reach (linear feet)	2,464	99	1,618	18
alley confinement (Confined, moderately confined, unconfined)	Moderately Confined	Unconfined	Moderately Confined	Unconfined
Drainage area (Acres)	308	24	98	27
erennial, Intermittent, Ephemeral	Perennial	Intermittent	Perennial	Intermittent
ICDWR Water Quality Classification	С	С	С	С
tream Classification (existing)	B4a	В	A to B4	В
tream Classification (proposed)	B4a	В	A to B4	Сb
volutionary trend (Simon)	IV – Degradation and Widening	III – Degrading	IV – Degradation and Widening	III – Degradin
EMA classification	Zone X	Zone X	Zone X	Zone X
Regu	latory Consideration	IS		
Parameters	Applicable?	Resolved?		ting Docs?
Vater of the United States - Section 404	Yes	No		CN
Vater of the United States - Section 401	Yes	No		CN
ndangered Species Act	Yes	Yes		al Exclusion
listoric Preservation Act	Yes	Yes	Categoric	al Exclusion
Coastal Zone Management Act (CZMA or CAMA)	No	N/A	N	J/A
EMA Floodplain Compliance	No	N/A	1	J/A
ssential Fisheries Habitat	No	N/A	1	N/A
lotes:				


UT to RUSH FORK MITIGATION PROJECT (DMS #100068) YEAR 2 MONITORING REPORT


APPENDIX B

Visual Assessment Data

	Ducioat NCDMC Duciost N - 100	ovember 2023					
each ID: Reach UT1-R1	Project – NCDMS Project No. 10	008	0	0			
	T						
Assessed Length (L	F): 206.41		Number Stable,				1
Major Channel Category	Channel Sub-Category	Metric	Performing as Intended	Total Number per As- built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performin as Intended
	1.Vertical Stability	1. Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%
		2. Degradation - Evidence of downcutting			0	0	100%
	2. Riffle Condition	1. Texture Substrate - Riffle maintains coarser substrate	10	10			100%
Bed	3. Meander Pool Condition	1. Depth - Sufficent (Max Pool Depth/Mean Bkf Depth ≥ 1.5) (Plunge Pools) 2. Length - Sufficent (>30% of centerline distance between tail of upstream riffle and head of downstream	9	9			100%
			9	9 N/A			
	4. Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	N/A N/A	N/A N/A			100%
		2. Thalweg centering at downstream of meander bend (Glide)	IN/A	IN/A			100%
	1. Scoured/Eroding	Bank lacking vegetative cover due to active scour and erosion			0	0	100%
	2. Undercut				0	0	100%
Bank	2. Undercut 3. Mass Wasting	Banks undercut/overhanging to the extent that mass wasting is expected Banks slumping, eaving or collapse			0	0	100%
	5. Mass wasting	Banks stumping, caving or conapse		Totals	0	0	100%
				Totais	0	0	10070
. Engineering Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs	10	10			100%
. Engineering Structures	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill	10	10			100%
	2a. Piping	Structures lacking any substantial flow underneath or around sills or arms	10	10			100%
	3. Bank Position	Bank erosion within the structures extent of influence does not exceed 15%	10	10			100%
	4. Habitat	Pool forming structures maintaining - Max Pool Depth/Mean Bankfull Depth ratio ≥ 1.5. Rootwads/logs providing some cover at low flow	10	10			100%
Reach ID: Reach UT1-R2 (EI)			1	0			
Assessed Length (L	F): 275.00						
Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number per As- built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performi as Intended
	1.Vertical Stability	1. Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%
		2. Degradation - Evidence of downcutting			0	0	100%
	2. Riffle Condition	1. Texture Substrate - Riffle maintains coarser substrate	2	2			100%
. Bed		1. Depth - Sufficent (Max Pool Depth/Mean Bkf Depth ≥ 1.5) (Plunge Pools)	2	2			100%
	3. Meander Pool Condition	 Length - Sufficent (>30% of centerline distance between tail of upstream riffle and head of downstream riffle) 	2	2			100%
	4. Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	N/A	N/A			100%
	in Thurwey Fostion	2. Thalweg centering at downstream of meander bend (Glide)	N/A	N/A			100%
				Т	-		
	1. Scoured/Eroding	Bank lacking vegetative cover due to active scour and erosion			0	0	100%
Bank	2. Undercut	Banks undercut/overhanging to the extent that mass wasting is expected			0	0	100%
	3. Mass Wasting	Banks slumping, caving or collapse			0	0	100%
				Totals	0	0	100%
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs	2	2			100%
Frankran Starrad		I Surdetures physically infact with no dislodged bounders of logs	-				
Engineering Structures	0 1	Grade control structures exhibiting maintenance of ande coress the sill	2	1 2			
Engineering Structures	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill	2	2			100%
Engineering Structures	2. Grade Control 2a. Piping	Structures lacking any substantial flow underneath or around sills or arms	2	2			100%
Engineering Structures	2. Grade Control						

Reach ID: Reach UT1-R3 (EII) Assessed Length (LI	a): 600.86						
Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number per As- built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended
	1.Vertical Stability	1. Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%
		2. Degradation - Evidence of downcutting			0	0	100%
	2. Riffle Condition	1. Texture Substrate - Riffle maintains coarser substrate	20	20			100%
1. Bed	3. Meander Pool Condition	L. Depth - Sufficent (Max Pool Depth/Mean Bkf Depth ≥ 1.5) (Plunge Pools) 2. Length - Sufficent (>30% of centerline distance between tail of upstream riffle and head of downstream riffle)	19	19			100%
		1. Thalweg centering at upstream of meander bend (Run)	N/A	N/A			100%
	4. Thalweg Position	2. Thalweg centering at downstream of meander bend (Glide)	N/A	N/A			100%
							10070
	1. Scoured/Eroding	Bank lacking vegetative cover due to active scour and erosion			0	0	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting is expected			0	0	100%
2. Bank	3. Mass Wasting	Banks slumping, caving or collapse			0	0	100%
	~			Totals	0	0	100%
3. Engineering Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs	19	19			100%
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill	19	19			100%
	2a. Piping	Structures lacking any substantial flow underneath or around sills or arms	19	19			100%
	3. Bank Position	Bank erosion within the structures extent of influence does not exceed 15%	19	19			100%
	4. Habitat	Pool forming structures maintaining - Max Pool Depth/Mean Bankfull Depth ratio ≥ 1.5. Rootwads/logs providing some cover at low flow	19	19			100%
Reach ID: Reach UT1-R4							
Assessed Length (LI	0. 1 224 37						
Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number per As- built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended
	1.Vertical Stability	1. Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)	Intended		0	0	100%
	in the deal balancey	2. Degradation - Evidence of downcutting			0	0	100%
	2. Riffle Condition	1. Texture Substrate - Riffle maintains coarser substrate	36	36			100%
1. Bed		1. Depth - Sufficent (Max Pool Depth/Mean Bkf Depth ≥ 1.5) (Plunge Pools)	36	36			100%
	3. Meander Pool Condition	 Length - Sufficent (>30% of centerline distance between tail of upstream riffle and head of downstream riffle) 	36	36			100%
	4. Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	N/A	N/A			100%
	4. I naiweg Position	2. Thalweg centering at downstream of meander bend (Glide)	N/A	N/A			100%
	1. Scoured/Eroding	Bank lacking vegetative cover due to active scour and erosion			0	0	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting is expected			0	0	100%
1 Daul	3. Mass Wasting	Banks slumping, caving or collapse			0	0	100%
2. Bank				Totals	0	0	100%
2. Bank							
2. Bank				_			
2. Bank 3. Engineering Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs	36	36			100%
	1. Overall Integrity 2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill	36	36			100% 100%
		Grade control structures exhibiting maintenance of grade across the sill Structures lacking any substantial flow underneath or around sills or arms	36 36	36 36			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill	36	36			100%

Assessed Length (L Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number per As- built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performin as Intended
	1.Vertical Stability	1. Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)	Intended		0	0	100%
	1. vertical stability	2. Degradation - Evidence of downcutting			0	0	100%
	2. Riffle Condition	1. Texture Substrate - Riffle maintains coarser substrate	1	1	0	0	100%
Bed		1. Depth - Sufficent (Max Pool Depth/Mean Bkf Depth ≥ 1.5) (Plunge Pools)	0	0	0	0	100%
	3. Meander Pool Condition	2. Length - Sufficent (>30% of centerline distance between tail of upstream riffle and head of downstream riffle)	N/A	N/A			100%
		1. Thalweg centering at upstream of meander bend (Run)	N/A	N/A			100%
	4. Thalweg Position	2. Thalweg centering at downstream of meander bend (Glide)	N/A	N/A			100%
	1. Scoured/Eroding	Bank lacking vegetative cover due to active scour and erosion			0	0	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting is expected			0	0	100%
. Bank	3. Mass Wasting	Banks slumping, caving or collapse			0	0	100%
	or muss of using	During stamping, earing of compose		Totals	0	0	100%
Engineering Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs	0	0			100%
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill	0	0			100%
	2a. Piping	Structures lacking any substantial flow underneath or around sills or arms	0	0			100%
	3. Bank Position	Bank erosion within the structures extent of influence does not exceed 15%	0	0			100%
		Pool forming structures maintaining - Max Pool Depth/Mean Bankfull Depth ratio ≥ 1.5. Rootwads/logs	0	0			1000/
	4. Habitat	providing some cover at low flow	0	0			100%
Reach ID: Reach UT3							
Assessed Length (L	F): 1,577.53		1				•
Assessed Length (L Major Channel Category	F): 1,577.53 Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number per As- built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Perform as Intended
× ·		Metric 1. Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)	Performing as				
× :	Channel Sub-Category	1. Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point	Performing as		Segments	Footage	as Intended
× :	Channel Sub-Category	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) Z. Degradation - Evidence of downcutting I. Texture Substrate - Riffle maintains coarser substrate	Performing as		Segments 0	Footage 0	as Intended
~ ~ · ·	Channel Sub-Category 1.Vertical Stability 2. Riffle Condition	 Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) Degradation - Evidence of downcutting 	Performing as Intended	built	Segments 0 0	Footage 0 0	as Intended 100% 100%
Major Channel Category	Channel Sub-Category 1.Vertical Stability	1. Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 2. Degradation - Evidence of downcutting 1. Texture Substrate - Riffle maintains coarser substrate 1. Depth - Sufficent (Max Pool Depth/Mean Bkf Depth ≥ 1.5) (Plunge Pools) 2. Length - Sufficent (>30% of centerline distance between tail of upstream riffle and head of downstream riffle	Performing as Intended 44 43 43	built 44	Segments 0 0 0 0	Footage 0 0 0 0	as Intended 100% 100% 100% 100% 100%
Major Channel Category	Channel Sub-Category 1.Vertical Stability 2. Riffle Condition 3. Meander Pool Condition	1. Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 2. Degradation - Evidence of downcutting 1. Texture Substrate - Riffle maintains coarser substrate 1. Depth - Sufficent (Max Pool Depth/Mean Bkf Depth ≥ 1.5) (Plunge Pools) 2. Length - Sufficent (>30% of centerline distance between tail of upstream riffle and head of downstream riffle) 1. Thalweg centering at upstream of meander bend (Run)	Performing as Intended 44 43	built 44 43	Segments 0 0 0 0	Footage 0 0 0 0	as Intended 100% 100% 100% 100% 100%
Major Channel Category	Channel Sub-Category 1.Vertical Stability 2. Riffle Condition	1. Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 2. Degradation - Evidence of downcutting 1. Texture Substrate - Riffle maintains coarser substrate 1. Depth - Sufficent (Max Pool Depth/Mean Bkf Depth ≥ 1.5) (Plunge Pools) 2. Length - Sufficent (>30% of centerline distance between tail of upstream riffle and head of downstream riffle	Performing as Intended 44 43 43	built 44 43 43	Segments 0 0 0 0	Footage 0 0 0 0	as Intended 100% 100% 100% 100% 100%
Major Channel Category	Channel Sub-Category 1.Vertical Stability 2. Riffle Condition 3. Meander Pool Condition 4. Thalweg Position	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) Degradation - Evidence of downcutting Texture Substrate - Riffle maintains coarser substrate Depth - Sufficent (Max Pool Depth/Mean Bkf Depth ≥ 1.5) (Plunge Pools) Length - Sufficent (>30% of centerline distance between tail of upstream riffle and head of downstream riffle) Thalweg centering at upstream of meander bend (Run) Thalweg centering at downstream of meander bend (Glide)	Performing as Intended 44 43 43 N/A	built 44 43 43 N/A	Segments 0 0 0 0	Footage 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	as Intended 100% 100% 100% 100% 100% 100% 100%
Major Channel Category	Channel Sub-Category 1.Vertical Stability 2. Riffle Condition 3. Meander Pool Condition 4. Thalweg Position 1. Scoured/Eroding	1. Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 2. Degradation - Evidence of downcutting 1. Texture Substrate - Riffle maintains coarser substrate 1. Depth - Sufficent (Max Pool Depth/Mean Bkf Depth ≥ 1.5) (Plunge Pools) 2. Length - Sufficent (>30% of centerline distance between tail of upstream riffle and head of downstream riffle) 1. Thalweg centering at upstream of meander bend (Run)	Performing as Intended 44 43 43 N/A	built 44 43 43 N/A	Segments 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Footage 0 0 0 0 0	as Intended 100% 100% 100% 100% 100% 100% 100% 100
Major Channel Category Bed	Channel Sub-Category 1.Vertical Stability 2. Riffle Condition 3. Meander Pool Condition 4. Thalweg Position	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) Degradation - Evidence of downcutting Texture Substrate - Riffle maintains coarser substrate Depth - Sufficent (Max Pool Depth/Mean Bkf Depth ≥ 1.5) (Plunge Pools) Length - Sufficent (>30% of centerline distance between tail of upstream riffle and head of downstream riffle) Thalweg centering at upstream of meander bend (Run) Thalweg centering at downstream of meander bend (Glide)	Performing as Intended 44 43 43 N/A	built 44 43 43 N/A	Segments 0	Footage 0 0 0 0 0	as Intended 100% 100% 100% 100% 100% 100% 100% 100
Major Channel Category Bed	Channel Sub-Category 1.Vertical Stability 2. Riffle Condition 3. Meander Pool Condition 4. Thalweg Position 1. Scoured/Eroding	1. Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 2. Degradation - Evidence of downcutting 1. Texture Substrate - Riffle maintains coarser substrate 1. Depth - Sufficent (Max Pool Depth/Mean Bkf Depth ≥ 1.5) (Plunge Pools) 2. Length - Sufficent (>30% of centerline distance between tail of upstream riffle and head of downstream riffle) 1. Thalweg centering at upstream of meander bend (Run) 2. Thalweg centering at downstream of meander bend (Glide) Bank lacking vegetative cover due to active scour and erosion	Performing as Intended 44 43 43 N/A	built 44 43 43 N/A N/A	Segments 0	Footage 0	as Intended 100% 100% 100% 100% 100% 100% 100% 100
Major Channel Category Bed	Channel Sub-Category 1.Vertical Stability 2. Riffle Condition 3. Meander Pool Condition 4. Thalweg Position 1. Scoured/Eroding 2. Undercut	1. Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 2. Degradation - Evidence of downcutting 1. Texture Substrate - Riffle maintains coarser substrate 1. Depth - Sufficent (Max Pool Depth/Mean Bkf Depth ≥ 1.5) (Plunge Pools) 2. Length - Sufficent (>30% of centerline distance between tail of upstream riffle and head of downstream riffle) 1. Thalweg centering at upstream of meander bend (Run) 2. Thalweg centering at downstream of meander bend (Glide) Bank lacking vegetative cover due to active scour and erosion Banks undercut/overhanging to the extent that mass wasting is expected	Performing as Intended 44 43 43 N/A	built 44 43 43 N/A	Segments 0	Footage 0 0 0 0 0	as Intended 100% 100% 100% 100% 100% 100% 100% 100
Major Channel Category Bed Bank	Channel Sub-Category 1.Vertical Stability 2. Riffle Condition 3. Meander Pool Condition 4. Thalweg Position 1. Scoured/Eroding 2. Undercut 3. Mass Wasting	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 2. Degradation - Evidence of downcutting 1. Texture Substrate - Riffle maintains coarser substrate 1. Depth - Sufficent (Max Pool Depth/Mean Bkf Depth ≥ 1.5) (Plunge Pools) 2. Length - Sufficent (>30% of centerline distance between tail of upstream riffle and head of downstream riffle) 1. Thalweg centering at upstream of meander bend (Run) 2. Thalweg centering at downstream of meander bend (Glide) Bank lacking vegetative cover due to active scour and erosion Banks undercut/overhanging to the extent that mass wasting is expected Banks slumping, caving or collapse	Performing as Intended 44 43 43 N/A N/A N/A	built	Segments 0	Footage 0	as Intended 100% 100% 100% 100% 100% 100% 100% 100
Major Channel Category Bed Bank	Channel Sub-Category 1.Vertical Stability 2. Riffle Condition 3. Meander Pool Condition 4. Thalweg Position 1. Scoured/Eroding 2. Undercut	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 2. Degradation - Evidence of downcutting 1. Texture Substrate - Riffle maintains coarser substrate 1. Depth - Sufficent (Max Pool Depth/Mean Bkf Depth ≥ 1.5) (Plunge Pools) 2. Length - Sufficent (>30% of centerline distance between tail of upstream riffle and head of downstream riffle) 1. Thalweg centering at upstream of meander bend (Run) 2. Thalweg centering at downstream of meander bend (Glide) Bank lacking vegetative cover due to active scour and erosion Banks undercut/overhanging to the extent that mass wasting is expected Banks sumping, caving or collapse Structures physically intact with no dislodged boulders or logs	Performing as Intended 44 43 43 43 N/A N/A N/A 43	built 44 43 43 N/A N/A N/A Totals 43	Segments 0	Footage 0	as Intended 100% 100% 100% 100% 100% 100% 100% 100
Major Channel Category Bed Bank	Channel Sub-Category 1.Vertical Stability 2. Riffle Condition 3. Meander Pool Condition 4. Thalweg Position 1. Scoured/Eroding 2. Undercut 3. Mass Wasting	1. Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 2. Degradation - Evidence of downcutting 1. Texture Substrate - Riffle maintains coarser substrate 1. Depth - Sufficent (Max Pool Depth/Mean Bkf Depth ≥ 1.5) (Plunge Pools) 2. Length - Sufficent (>30% of centerline distance between tail of upstream riffle and head of downstream riffle) 1. Thalweg centering at upstream of meander bend (Run) 2. Thalweg centering at downstream of meander bend (Glide) Bank lacking vegetative cover due to active scour and erosion Banks slumping, caving or collapse Structures physically intact with no dislodged boulders or logs Grade control structures exhibiting maintenance of grade across the sill	Performing as Intended 44 43 43 43 N/A N/A N/A 43 43	built 44 43 43 N/A N/A N/A Totals 43 43 43	Segments 0	Footage 0	as Intended 100% 100% 100% 100% 100% 100% 100% 100
Major Channel Category	Channel Sub-Category 1.Vertical Stability 2. Riffle Condition 3. Meander Pool Condition 4. Thalweg Position 1. Scoured/Eroding 2. Undercut 3. Mass Wasting 1. Overall Integrity	1. Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 2. Degradation - Evidence of downcutting 1. Texture Substrate - Riffle maintains coarser substrate 1. Depth - Sufficent (Max Pool Depth/Mean Bkf Depth ≥ 1.5) (Plunge Pools) 2. Length - Sufficent (Nax Pool Depth/Mean Bkf Depth ≥ 1.5) (Plunge Pools) 2. Length - Sufficent (>30% of centerline distance between tail of upstream riffle and head of downstream riffle) 1. Thalweg centering at upstream of meander bend (Run) 2. Thalweg centering at downstream of meander bend (Gilde) Bank lacking vegetative cover due to active scour and erosion Banks undercut/overhanging to the extent that mass wasting is expected Banks slumping, caving or collapse Structures physically intact with no dislodged boulders or logs Grade control structures exhibiting maintenance of grade across the sill Structures lacking any substantial flow underneath or around sills or arms	Performing as Intended 44 43 43 43 N/A N/A N/A N/A 43 43 43	built 44 43 43 N/A N/A N/A Totals 43 43 43 43	Segments 0	Footage 0	as Intended 100% 100% 100% 100% 100% 100% 100% 100
Major Channel Category Bed Bank	Channel Sub-Category 1.Vertical Stability 2. Riffle Condition 3. Meander Pool Condition 4. Thalweg Position 1. Scoured/Eroding 2. Undercut 3. Mass Wasting 1. Overall Integrity 2. Grade Control	1. Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 2. Degradation - Evidence of downcutting 1. Texture Substrate - Riffle maintains coarser substrate 1. Depth - Sufficent (Max Pool Depth/Mean Bkf Depth ≥ 1.5) (Plunge Pools) 2. Length - Sufficent (>30% of centerline distance between tail of upstream riffle and head of downstream riffle) 1. Thalweg centering at upstream of meander bend (Run) 2. Thalweg centering at downstream of meander bend (Glide) Bank lacking vegetative cover due to active scour and erosion Banks slumping, caving or collapse Structures physically intact with no dislodged boulders or logs Grade control structures exhibiting maintenance of grade across the sill	Performing as Intended 44 43 43 43 N/A N/A N/A 43 43	built 44 43 43 N/A N/A N/A Totals 43 43 43	Segments 0	Footage 0	as Intended 100% 100% 100% 100% 100% 100% 100% 100

Reach ID: Reach UT4							
Assessed Length (L	F): 41.90						
Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number per As- built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended
1. Bed	1.Vertical Stability	 Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 			0	0	100%
		2. Degradation - Evidence of downcutting			0	0	100%
	2. Riffle Condition	1. Texture Substrate - Riffle maintains coarser substrate	1	1	0	0	100%
	3. Meander Pool Condition	1. Depth - Sufficent (Max Pool Depth/Mean Bkf Depth \geq 1.5) (Plunge Pools)	0	0	0	0	100%
		 Length - Sufficent (>30% of centerline distance between tail of upstream riffle and head of downstream riffle) 	0	0			100%
	4. Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	N/A	N/A			100%
		2. Thalweg centering at downstream of meander bend (Glide)	N/A	N/A			100%
	•						
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover due to active scour and erosion			0	0	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting is expected			0	0	100%
	3. Mass Wasting	Banks slumping, caving or collapse			0	0	100%
				Totals	0	0	100%
3. Engineering Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs	0	0			100%
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill	0	0			100%
	2a. Piping	Structures lacking any substantial flow underneath or around sills or arms	0	0			100%
	3. Bank Position	Bank erosion within the structures extent of influence does not exceed 15%	0	0			100%
	4. Habitat	Pool forming structures maintaining - Max Pool Depth/Mean Bankfull Depth ratio ≥ 1.5. Rootwads/logs providing some cover at low flow	0	0			100%

Table 6. Vegetation Conditions Assessment - Assessed November 2023 UT to Rush Fork Stream Mitigation Project - NCDMS Project No. 100068

Planted Acreage: 7.3						
Vegetation Category	Defintions	Mapping Threshold (acres)	CCPV Depiction	Number of Polygons	Combined Acreage	% of Planted Acreage
I. Bare Areas	Very limited cover both woody and herbaceous material.	0.1 acres	N/A	0	0.00	0.0%
2. Low Stem Density Areas	Woody stem densities clearly below target levels based on MY3, 4, or 5 stem count criteria.	0.1 acres	Orange Hatch	4	0.30	5.5%
			Total			
3. Areas of Poor Growth Rates or Vigor	Areas with woody stems or a size class that are obviously small given the monitoring year.	0.25 acres	N/A	0	0.00	0.0%
Easement Acreage: 8.26						
Vegetation Category	Defintions	Mapping Threshold	CCPV Depiction	Number of Points	Combined Acreage	% of Planted Acreage
. Invasive Areas of Concern	Areas or points (if too small to render as polygons at map scale)	1000 ft ²	N/A	0	0.00	0.0%
. Easement Encroachment Areas	Areas or points (if too small to render as polygons at map scale)	577 ft²	Red Hatch	1	0.03	0.4%

PP-1: UT1, R 1, Station 11+00. Upstream. May 10, 2023

PP-3: UT1, R 1, Station 12+10 Culvert. Downstream. May 10, 2023

PP-5: UT1, R 2, Station 13+25. Facing Downstream. May 10, 2023

PP-2: UT1, R 1, Station 11+80. Upstream. May 10, 2023

PP-4: UT1, R 1, Station 12+33 Culvert. Upstream. May 10, 2023

PP-6: UT1, R 2, Station 14+00. Upstream. May 10, 2023

PP-7: UT1, R 2, Station 14+60. Upstream. May 10, 2023

PP-9: UT1, R 3, Station 16+50. Upstream. May 10, 2023

P-11: UT1, R 3, Station 17+35. Upstream. May 10, 2023

PP-8 UT1, R 2, Station 15+50. Upstream. May 10, 2023

PP-10: UT1, R 3, 16+80. Upstream. May 10, 2023

PP-12: UT1, R 3, Station 18+25. Upstream. May 10, 2023

PP-13: UT1, R 3, Station 18+90. Upstream. May 10, 2023

PP-15: UT2, Station 10+15. Upstream. May 10, 2023

PP-17: UT1, R3, Station 19+70. Upstream. May 10, 2023

PP-14: UT1 R 3, Station 19+55. Upstream. May 10, 2023

PP-16: UT2, Station 10+85. Upstream. May 10, 2023

PP-18: UT1, R 3, Station 20+60. Upstream. May 10, 2023

PP-19: UT1, R 3, Station 22+00. Upstream. May 10, 2023

PP-21: UT1, R 4, Station 23+90. Upstream. May 10, 2023

PP-23: UT4, Station 10+50. Upstream. May 10, 2023

PP-20: UT1, R 4, Station 22+75. Upstream. May 10, 2023

PP-22: UT1, R 4, Station 24+20. Upstream. May 10, 2023

PP-24: UT1, R 4, Station 25+25. Upstream. May 10, 2023

PP-25: UT1, R 4, Station 26+00. Upstream. May 10, 2023

PP-27: UT1, R 4, Station 27+75. Upstream. May 10, 2023

PP-29: UT3. Upstream. Station 10+15. May 10, 2023

PP-26: UT1, R 4, Station 27+00. Upstream. May 10, 2023

PP-28: UT1, R 4, Station 27+90. Downstream. May 10, 2023

PP-30: UT3, Station 10+30. Upstream. May 10, 2023

PP-31: UT3, Station 11+10. Upstream. May 10, 2023

PP-33: UT3, Station 13+15. Upstream. May 10, 2023

PP-35: UT3, Station 14+85. Upstream. May 10, 2023

PP-32: UT3, Station 11+75. Upstream. May 10, 2023

PP-34: UT3, Station 14+15. Upstream. May 10, 2023

PP-36: UT3, Station 15+95. Upstream. May 10, 2023

PP-37: UT3, Station 17+35. Upstream. May 10, 2023

PP-39: UT3, Station 18+75. Upstream. May 10, 2023

PP-41: UT3, Station 21+20. Upstream. May 10, 2023

PP-38: UT3, Station 17+65. Upstream. May 10, 2023

PP-40: UT3, Station 20+40. Upstream. May 10, 2023

PP-42: UT3, Station 22+10. Upstream. May 10, 2023

PP-43: UT3, Station 22+15. Downstream. May 10, 2023

PP-45: UT3, Station 24+40. Upstream. May 10, 2023

PP-47: UT3, Station 26+30. Upstream at confluence. May 10, 2023

PP-44: UT3, Station 23+15. Upstream. May 10, 2023

PP-46: UT3, Station 25+35. Upstream. May 10, 2023

PP-48: UT1, R 4, Station 30+50. Downstream. May 17, 2023

PP-49: UT1, R 4, Station 31+20. Upstream. May 17, 2023

PP-51: UT1, R 4, Station 33+10. Upstream. May 17, 2023

PP-53: UT1, R 4, Station 35+00. Upstream. May 17, 2023

PP-50: UT1, R 4, Station 32+50. Upstream. May 17, 2023

PP-52: UT1, R 4, Station 34+30. Upstream. May 17, 2023

PP-54: UT1, R 4, Station 35+60. Upstream. May 17, 2023

PP-55: UT1, R 4, Station 36+15. Upstream. May 17, 2023

PP-57: UT1, R 4, Station 37+50. Upstream. May 17, 2023

PP-56: UT1, R 4, Station 37+00. Upstream. May 17, 2023

PP-58: UT1, R 4, Station 37+60. Downstream. End of Project. May 17, 2023

Vegetation Plot Photographs NCDMS Project No. 100068

Vegetation Plot #1: Photo taken October 3, 2023

Vegetation Plot #3: Photo taken August 31, 2023

Vegetation Plot #5: Photo taken October 3, 2023

Vegetation Plot #2: Photo taken August 31, 2023

Vegetation Plot #4: Photo taken August 14, 2023

Vegetation Plot #6: Photo taken August 31, 2023

Vegetation Plot Photographs NCDMS Project No. 100068

Random Vegetation Plot #3 MY2: Photo taken October 3, 2023

Monitoring Gauges and Overbank Photographs. Photos taken November 8, 2023.

Flow Gauge 1. UT3.

Flow Gauge 3. UT4.

Crest Gauge 2 UT1 R1.

Flow Gauge 2. UT2.

Crest Gauge 1. UT3.

Crest Gauge 3 UT1 R4.

Michael Baker Engineering Inc. UT to Rush Fork Stream Mitigation Project (DMS #100068) Year 2 Monitoring Report

APPENDIX C

Vegetation Plot Data

Table 7. Vegetation Plot Data

Planted Acreage	7.3
Date of Initial Plant	2022-02-23
Date(s) of Supplemental Plant(s)	NA
Date(s) Mowing	2023-10-03
Date of Current Survey	2023-10-03
Plot size (ACRES)	0.0247

	Scientific Name	Common Name	Tree/S	Indicator	Veg P	lot 1 F	Veg P	lot 2 F	Veg P	lot 3 F	Veg P	lot 4 F	Veg P	lot 5 F	Veg P	ot 6 F	Veg Plot 3 R
	Scientific Name	Common Name	hrub	Status	Planted	Total	Planted	Total	Total								
	Acer negundo	boxelder	Tree	FAC													1
	Aesculus flava	yellow buckeye	Tree	FACU							1	1			1	1	
	Aronia arbutifolia	red chokeberry	Shrub	FACW			2	2									3
	Betula lenta	sweet birch	Tree	FACU	1	1											
	Betula nigra	river birch	Tree	FACW	2	2					1	1					
	Carpinus caroliniana	American hornbeam	Tree	FAC					2	2	2	2					
	Cephalanthus occidentalis	common buttonbush	Shrub	OBL					1	1							
Species	Cornus amomum	silky dogwood	Shrub	FACW					1	1	1	1					
Included in	Fraxinus americana	white ash	Tree	FACU	1	1	1	1									
Approved	Fraxinus pennsylvanica	green ash	Tree	FACW	4	4											1
Mitigation Plan	Liriodendron tulipifera	tuliptree	Tree	FACU			1	1			2	2	1	1			
, , , , , , , , , , , , , , , , , , ,	Liriodendron tulipifera var. tulipifera	tuliptree	Tree	FACU	1	1											
	Platanus occidentalis	American sycamore	Tree	FACW			1	1			2	2	1	1	2	2	
	Quercus alba	white oak	Tree	FACU					1	1			2	2	2	2	1
	Quercus imbricaria	shingle oak	Tree	FAC	1	1			2	2	2	2					
	Sambucus canadensis	American black elderberry	Tree				1	1									
_	Tilia americana	American basswood	Tree	FACU									2	2			
Sum	Performance Standard				10	10	6	6	7	7	11	11	6	6	5	5	6
												•					
	Acer rubrum	red maple	Tree	FAC				2									
Post Mitigation Plan Species	Acer saccharinum	silver maple	Tree	FACW								1					
Plail Species	Juglans nigra	black walnut	Tree	FACU													4
Sum	Proposed Standard				10	10	6	6	7	7	11	11	6	6	5	5	6
	Current Year Stem	n Count				10		6		7		11		6		5	6
Mitiaatian Dlan	Stems/Acre	2				405		243		283		445		243		202	243
Mitigation Plan Performance	Species Cour	nt				6		5		5		7		4		3	4
Standard	Dominant Species Com	position (%)				40		25		29		17		33		40	40
Standard	Average Plot Heig	ght (ft.)				4		3		2		2		2		4	4
	% Invasives	5				0		0		0		0		0		0	0
											1						
	Current Year Stem					10		6	ļ	7		11		6		5	6
Post Mitigation	Stems/Acre					405		243		283		445		243		202	243
Plan	Species Cour					6		5		5		7		4		3	4
Performance	Dominant Species Com					40		25		29		17		33		40	40
Standard	Average Plot Heig					4		3		2		2		2		4	4
	% Invasives	5				0		0		0		0		0		0	0

1). Bolded species are proposed for the current monitoring year, italicized species are not approved, and a regular font indicates that the species has been approved.

2). The "Species Included in Approved Mitigation Plan" section contains only those species that were included in the original approved mitigation plan. The "Post Mitigation Plan Species" section includes species that are being proposed through a mitigation plan addendum for the current monitoring year (bolded), species that have been approved in prior monitoring years through a mitigation plan addendum for the current monitoring year (bolded).

3). The "Mitigation Plan Performance Standard" section is derived only from stems included in the original mitigation plan, whereas the "Post Mitigation Plan Performance Standard" includes data from mitigation plan approved, post mitigation plan approved, and proposed stems.

Michael Baker Engineering Inc. UT to Rush Fork Stream Mitigation Project (DMS #100068) Year 2 Monitoring Report

Table 7. Vegetation Plot Data

5		Veg	etation Pe	rformance St	tandards Sur	nmary Table						
		Veg Plot 1					lot 2 F			Veg P	lot 3 F	
	Stems/Ac.	Av. Ht. (ft)	# Species	% Invasives	Stems/Ac.	Av. Ht. (ft)	# Species	% Invasives	Stems/Ac.	Av. Ht. (ft)	# Species	% In
Monitoring Year 7												
Monitoring Year 5												
Monitoring Year 3												
Monitoring Year 2	405		6	0	243		5	0	283		5	
Monitoring Year 1	324		5	0	283		6	0	364		5	
Monitoring Year 0	729		9	0	607		11	0	729		9	
		Veg Plot 4	F			Veg P	lot 5 F			Veg P	lot 6 F	-
	Stems/Ac.	Av. Ht. (ft)	# Species	% Invasives	Stems/Ac.	Av. Ht. (ft)	# Species	% Invasives	Stems/Ac.	Av. Ht. (ft)	# Species	% In
Monitoring Year 7												
Monitoring Year 5												
Monitoring Year 3												
Monitoring Year 2	445		7	0	243		4	0	202		3	
Monitoring Year 1	445		8	0	567		10	0	364		7	
Monitoring Year 0	810		10	0	972		13	0	648		8	
	Veg	Plot Grou	0 1 R	•								
	Stems/Ac.	Av. Ht. (ft)	# Species	% Invasives								
Monitoring Year 7												
Monitoring Year 5												
Monitoring Year 3												
Monitoring Year 2	243		4	0								
Monitoring Year 1	364		6	0	1							
Monitoring Year 0	567		10	0	1							
*Fach monitoring year represents a different plot f	or the random vegetation plot "gr	ouns" Rand	lom plots ar	a dapated with	an P and fixed	plots with an E						

*Each monitoring year represents a different plot for the random vegetation plot "groups". Random plots are denoted with an R, and fixed plots with an F.

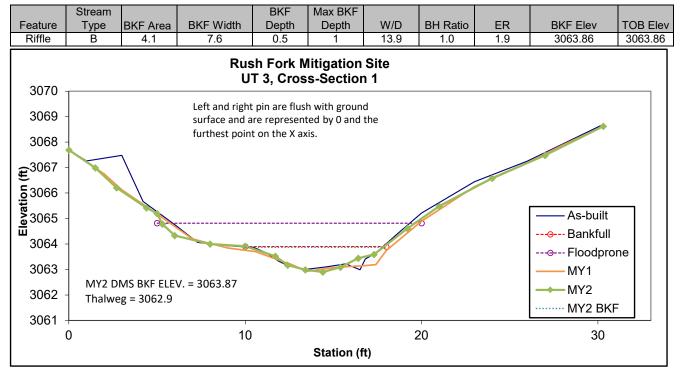
Table 7. Supplemental Planting Data

	Scientific Name	Common Name	Indicator Status	# of Stems
	Platanus occidentalis	American sycamore	FACW	12
	Acer negundo	boxelder	FAC	5
Monitoring Year 2	Betula nigra	river birch	FACW	5
	Liriodendron tulipifera	tuliptree	FACU	4
	Carpinus caroliniana	American hornbeam	FAC	4

Invasives	
0	
0	
0	
Invasives	
0	
0	

APPENDIX D

Stream Geomorphology Data

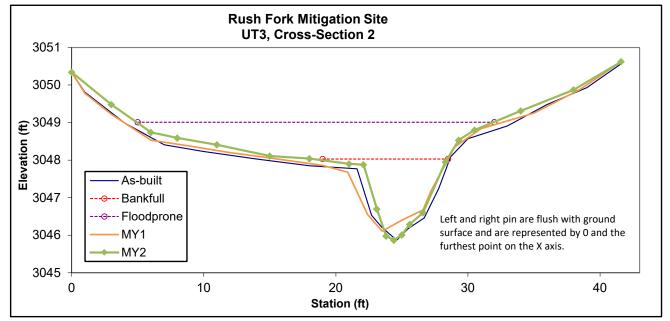

Year 2 Survey Collected: November 2023

Looking at the Left Bank

Looking at the Right Bank

Note: Per DMS/IRT request, bank height ratio for MY2 has been calculated using the bankfull elevation as determined from the as-built bankfull area. All other values were calculated using the as-built bankfull elevation.

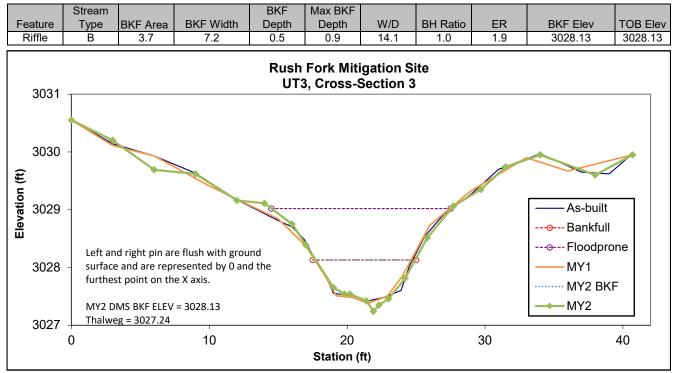
Year 2 Survey Collected: November 2023



Looking at the Left Bank

Looking at the Right Bank

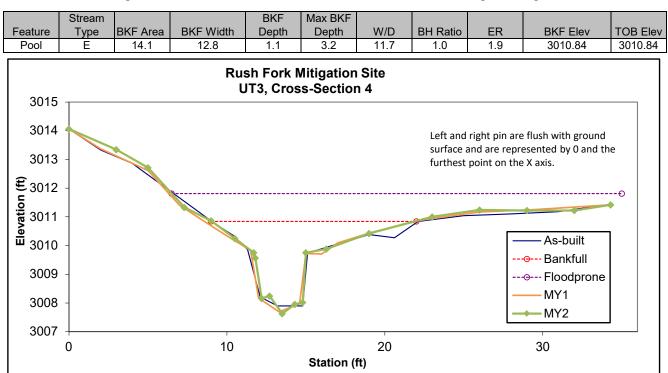
		Stream			BKF	Max BKF					
F	eature	Туре	BKF Area	BKF Width	Depth	Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev
	Pool	С	8.8	10.2	9	2.2	11.9	1.0	1.9	3048.03	3048.03


Year 1 Survey Collected: November 2023

Looking at the Left Bank

Looking at the Right Bank

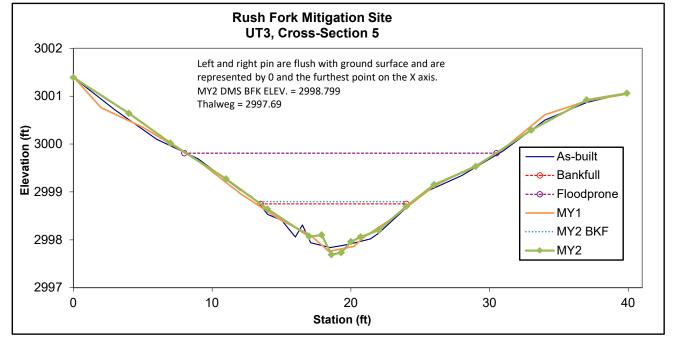
Note: Per DMS/IRT request, bank height ratio for MY2 has been calculated using the bankfull elevation as determined from the as-built bankfull area. All other values were calculated using the as-built bankfull elevation.


Year 2 Survey Collected: November 2023

Looking at the Left Bank

Looking at the Right Bank

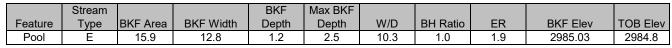
Year 2 Survey Collected: November 2023

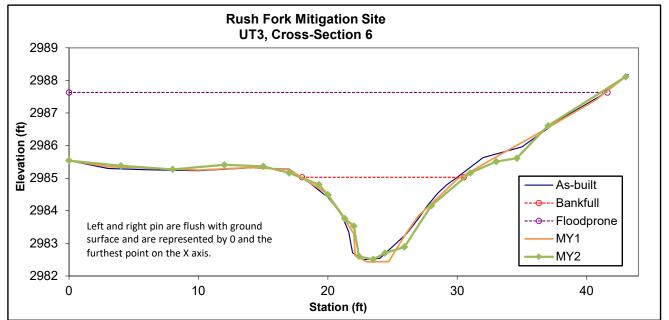


Looking at the Left Bank

Looking at the Right Bank

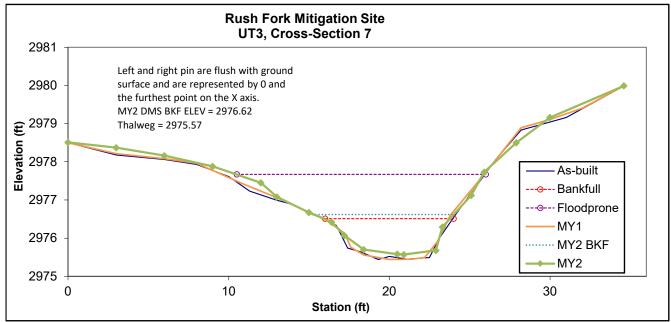
	Stream	n		BKF	Max BKF					
Feat	ure Type	BKF Area	BKF Width	Depth	Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev
Riff	le B	5.7	10.7	0.5	1.1	20.3	1.0	1.9	2998.75	2998.75




Note: Per DMS/IRT request, bank height ratio for MY2 has been calculated using the bankfull elevation as determined from the as-built bankfull area. All other values were calculated using the as-built bankfull elevation.

Year 1 Survey Collected: November 2023

Looking at the Right Bank

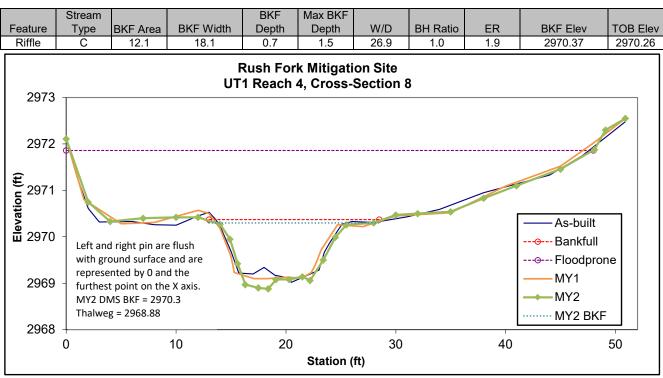

Year 2 Survey Collected: November 2023

Looking at the Left Bank

Looking at the Right Bank

	Stream			BKF	Max BKF					
Featur	е Туре	BKF Area	BKF Width	Depth	Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev
Riffle	В	5.2	7.9	0.7	0.9	11.9	1.0	1.9	2976.51	2976.51

Note: Per DMS/IRT request, bank height ratio for MY2 has been calculated using the bankfull elevation as determined from the as-built bankfull area. All other values were calculated using the as-built bankfull elevation.


Year 2 Survey Collected: November 2023

Looking at the Left Bank

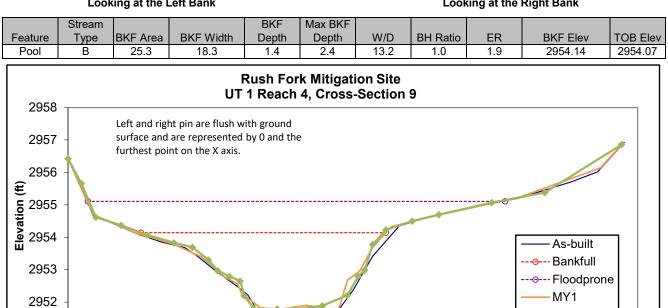
Looking at the Right Bank

Note: Per DMS/IRT request, bank height ratio for MY2 has been calculated using the bankfull elevation as determined from the as-built bankfull area. All other values were calculated using the as-built bankfull elevation.

Year 2 Survey Collected: November 2023

Looking at the Left Bank

2951


0

Looking at the Right Bank

MY2

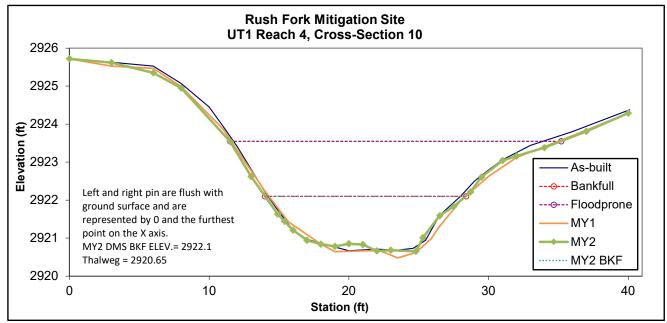
40

30

20

Station (ft)

10

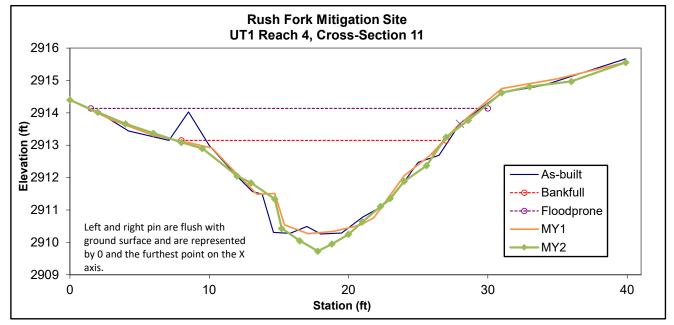

Year 2 Survey Collected: August 2023

Looking at the Left Bank

	Stream			BKF	Max BKF					
Feature	Туре	BKF Area	BKF Width	Depth	Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev
Riffle	В	14.5	14.4	1	1.4	14.2	1.0	1.9	2922.1	2922.1

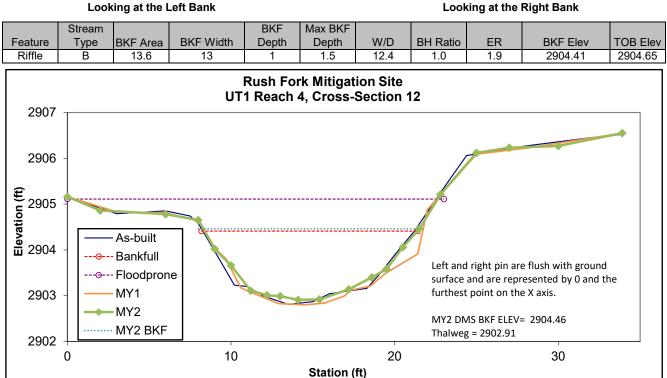
Note: Per DMS/IRT request, bank height ratio for MY2 has been calculated using the bankfull elevation as determined from the as-built bankfull area. All other values were calculated using the as-built bankfull elevation.

Year 2 Survey Collected: August 2023



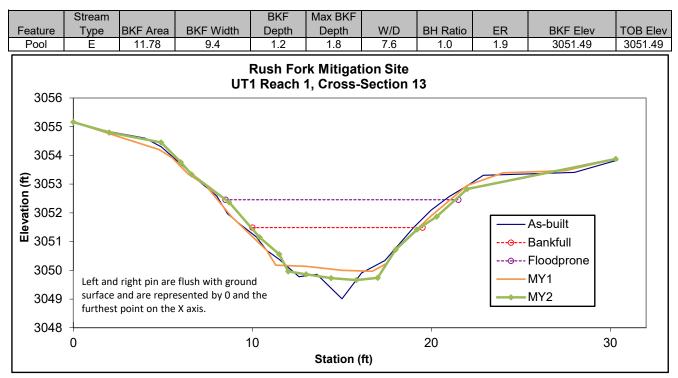
Looking at the Left Bank

Looking at the Right Bank


	Stream			BKF	Max BKF					
Feature	Туре	BKF Area	BKF Width	Depth	Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev
Pool	E	32.6	19.3	1.7	3.4	11.4	1.0	1.9	2913.15	2913.09

Year 2 Survey Collected: August 2023

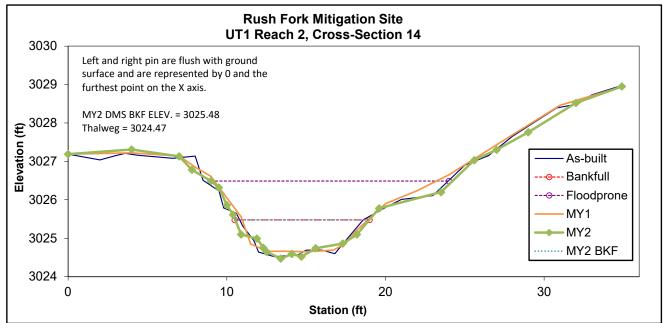
Note: Per DMS/IRT request, bank height ratio for MY2 has been calculated using the bankfull elevation as determined from the as-built bankfull area. All other values were calculated using the as-built bankfull elevation.


Year 2 Survey Collected November 2023

Looking at the Left Bank

Looking at the Right Bank

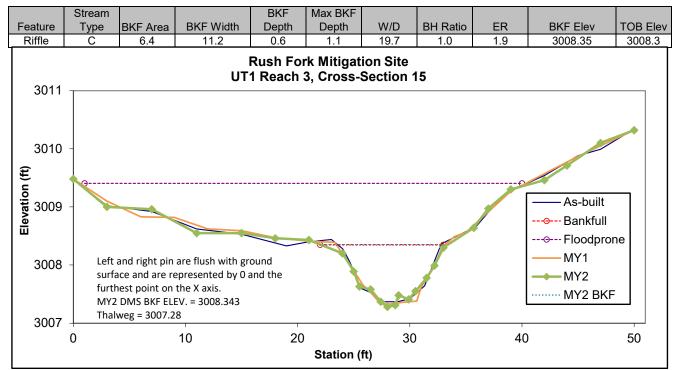
Year 2 Survey Collected: November 2023



Looking at the Left Bank

Looking at the Right Bank

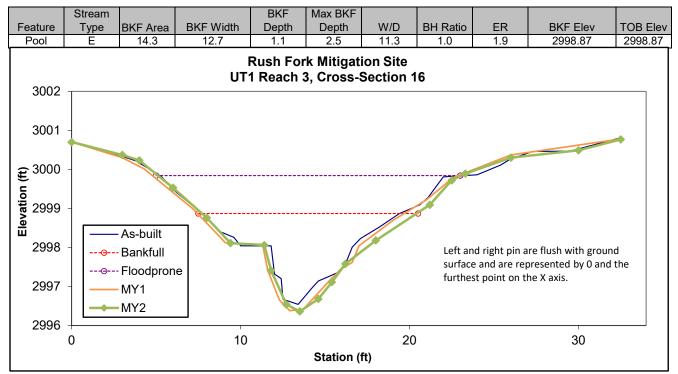
	Stream			BKF	Max BKF					
Feature	Туре	BKF Area	BKF Width	Depth	Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev
Riffle	В	5.5	8.5	0.6	1	13.1	1.0	1.9	3025.48	3025.48


Note: Per DMS/IRT request, bank height ratio for MY2 has been calculated using the bankfull elevation as determined from the as-built bankfull area. All other values were calculated using the as-built bankfull elevation.

Year 2 Survey Collected: November 2023

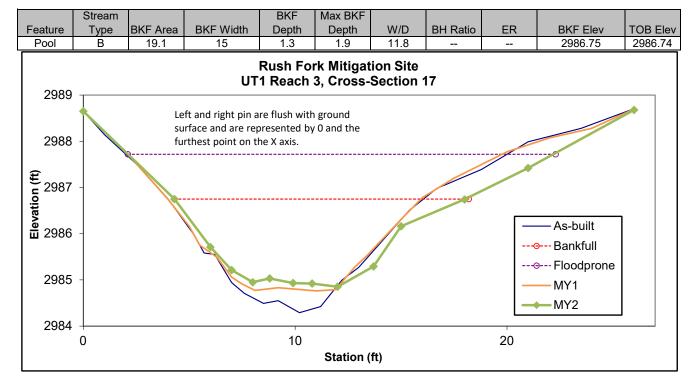
Looking at the Right Bank

Note: Per DMS/IRT request, bank height ratio for MY1 has been calculated using the bankfull elevation as determined from the as-built bankfull area. All other values were calculated using the as-built bankfull elevation.


Year 2 Survey Collected: November 2023

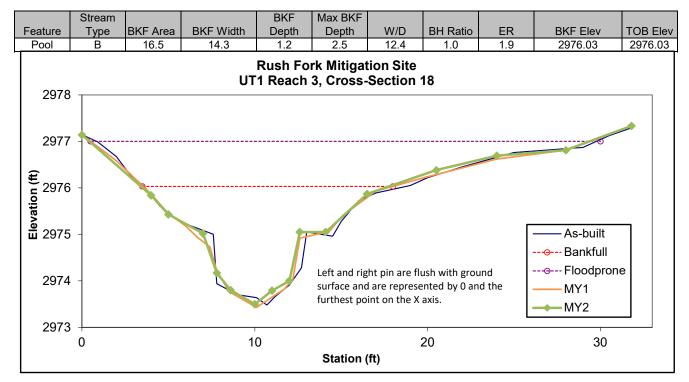
Looking at the Left Bank

Looking at the Right Bank


Year 2 Survey Collected: November 2023

Looking at the Left Bank

Looking at the Right Bank


Year 2 Data Collected: November 2023

Looking at the Left Bank

Looking at the Right Bank

Table 8. Baseline Stream Data Summary																
Rush Fork Stream Mitigation Project: DMS Pr	oject No l	D. 100068														
UT1 - Reach 1-3 (Enhancement)	-				-				-				-			
Parameter		Pre-Existing C			R	eference Reach(es) Da	ta		Desig				As-b	:14	
гагашецег		Pre-Existing C	onun	on		Composit	e			Desig	n			A3-0	ulli	
Dimension and Substrate - Riffle	Min	Mean	Med	Max	Min	Mean	Med	Max	Min	Mean	Med	Max	Min	Mean	Med	Max
BF Width (ft)	7.1000	9.65		12.2000	9.90	11.39		12.88	9.00	9.50		10.00	7.79	9.28	9.28	10.76
Floodprone Width (ft)													15.09	27.03	15.09	38.96
BF Mean Depth (ft)	0.2700	0.58		0.8900	0.55	0.86		1.16	0.65	0.68		0.70	0.59	0.65	0.65	0.70
BF Max Depth (ft)									0.80	0.90		1.00	0.96	0.98	0.98	0.99
BF Cross-sectional Area (ft ²)	3.3300	4.85		6.4	5.4	8.76		12.1	5.9	6.45		7.00	5.44	5.90	5.90	6.36
Width/Depth Ratio	7.9800	26.62		45.2600	8.97	13.49		18.00	13.80	14.05		14.30	11.13	14.69	14.69	18.24
Entrenchment Ratio	1.1500	1.43		1.7100	1.70	1.67		1.63	1.40			2.20	1.94	2.78	2.78	3.62
Bank Height Ratio	1.0000	1.43		1.8600	1.00	1.19		1.38	1.10			1.10	1.00	1.00	1.00	1.00
d50 (mm)																
Pattern																
Channel Beltwidth (ft)		N/A				N/A				N/A				N/A		
Radius of Curvature (ft)		N/A				N/A				N/A				N/A		
Rc/Bankfull width (ft/ft)		N/A				N/A				N/A				N/A		
Meander Wavelength (ft)		N/A				N/A				N/A				N/A		
Meander Width Ratio		N/A				N/A				N/A				N/A		
Profile											· · ·					
Riffle Length (ft)													4.30	14.60	15.40	20.50
Riffle Slope (ft/ft)													-0.0950	-0.0680	-0.0630	-0.0400
Pool Length (ft)													2.00	9.50	10.00	14.00
Pool to Pool Spacing (ft)													14.00	42.10	35.00	240.00
Pool Max Depth (ft)									1.50	1.75		2.00	2.33	2.46	2.47	2.55
Substrate and Transport Parameters		•				•			<u>n</u>							
SC% / Sa% / G% / C% / Bo%																
d16 / d35 / d50 / d84 / d95		168.14/256/80														
Additional Reach Parameters																
Drainage Area (SM)		0.21			0.15	0.32		0.49	0.15			0.21	0.15			0.21
Impervious cover estimate (%)																
Rosgen Classification		B4a				B4a - B4 - Ba				B4a				В		
BF Velocity (fps)	3.00	3.82		4.64	3.42	5.11		6.80	2.15	3.58		5.00				
BF Discharge (cfs)	10.00	19.75		29.50	23.90	31.16		38.41	12.60	14.95		17.30				
Valley Length																
			1				1				1					

1,082.27

1,093.30

1.05

Channel Length (ft)

Sinuosity

1,164

1.07

1.07

1.02

1.08

1.14

1.06

Table 8. Baseline Stream Data Summary

Rush Fork Stream Mitigation Project: DMS Project No ID. 100068

UT1 - Reach 4 (Restoration)													-			
Parameter		Pre-Existing C	onditie	'n	R	eference Reach(es) Da	ta		Desig	n			As-b	il+	
1 al ameter		Tre-Existing C	onunu)11		Composit	e			Desig	,11			AS-L	unt	
Dimension and Substrate - Riffle	Min	Mean	Med	Max	Min	Mean	Med	Max	Min	Mean	Med	Max	Min	Mean	Med	Max
BF Width (ft)	8.7300	11.07		13.4000	9.90	11.39		12.88	12.50	12.75		13.00	12.93	14.21	13.36	15.90
Floodprone Width (ft)													21.96	30.86	24.30	46.32
BF Mean Depth (ft)	0.7300	1.01		1.2800	0.55	0.86		1.16	0.90	0.93		0.95	0.69	0.71	0.87	1.11
BF Max Depth (ft)									1.20	1.25		1.30	1.35	1.46	1.43	1.60
BF Cross-sectional Area (ft ²)	9.8600	10.48		11.1	5.4	8.76		12.1	11.3	11.70		12.10	11.01	13.27	14.33	14.48
Width/Depth Ratio	6.8200	12.59		18.3600	8.97	13.49		18.00	12.00	15.00		18.00	11.65	15.94	13.13	13.13
Entrenchment Ratio	1.4800	2.45		3.4200	1.70	1.67		1.63	1.40	1.80		2.20	1.59	2.13	1.88	1.88
Bank Height Ratio	1.0000	1.31		1.6200	1.00	1.19		1.38	1.00			1.62	1.00	1.00	1.00	1.00
d50 (mm)																
Pattern																
Channel Beltwidth (ft)		N/A				N/A				N/A				N/A		
Radius of Curvature (ft)		N/A				N/A				N/A				N/A		
Rc/Bankfull width (ft/ft)		N/A				N/A				N/A				N/A		
Meander Wavelength (ft)		N/A				N/A				N/A				N/A		
Meander Width Ratio		N/A				N/A				N/A				N/A		
Profile													-			
Riffle Length (ft)													12.30	19.30	17.70	19.30
Riffle Slope (ft/ft)													-0.5800	-0.0220	-0.0377	-0.0790
Pool Length (ft)													2.00	13.40	14.00	22.00
Pool to Pool Spacing (ft)													18.00	44.80	40.00	117.00
Pool Max Depth (ft)										2.50			2.55	2.72	2.72	2.89
Substrate and Transport Parameters		1	1						l	I			I	I	I	
SC% / Sa% / G% / C% / Bo%																
d16 / d35 / d50 / d84 / d95		156/180/100.3														
Additional Reach Parameters		1								r			r	r	1	
Drainage Area (SM)		0.48			0.15	0.32		0.49								
Impervious cover estimate (%)																
Rosgen Classification		B4				B4a - B4 - Ba				B4				B4		
BF Velocity (fps)	3.17	3.61		4.04	3.42	5.11		6.80	4.00	5.00		6.00				
BF Discharge (cfs)	31.24	38.03		44.81	23.90			38.41	37.88	38.13		38.37				
Valley Length																
Channel Length (ft)		1,300.00								1,216.33				1,224.37		
Sinuosity	1.08	1.11		1.14	1.02	1.08		1.14	1.10	1.15		1.20				

Rush Fork Stream Mitigation Project: DMS Project No ID. 100068

UT3 - Restoration					r				-				1			
Parameter		Pre-Existing	Conditio	n	R	leference Reach(es) Da	ta		Desig	n			As-l	ouilt	
		0				Composit				0						
Dimension and Substrate - Riffle	Min	Mean	Med	Max	Min	Mean	Med	Max	Min	Mean	Med	Max	Min	Mean	Med	Max
BF Width (ft)		6.58			9.90	11.39		12.88	7.50	8.00		8.50	7.04	8.29	7.60	10.92
Floodprone Width (ft)													11.96	15.37	14.41	20.71
BF Mean Depth (ft)		0.82			0.55	0.86		1.16	0.57	0.61		0.65	0.52	0.61	0.58	0.77
BF Max Depth (ft)									0.70	0.78		0.85	0.71	0.89	0.89	1.07
BF Cross-sectional Area (ft ²)		5.4			5.4	8.76		12.1	4.6	5.30		6.00	3.64	5.05	5.16	6.23
Width/Depth Ratio		8.02			8.97	13.49		18.00		13.10			10.32	13.88	13.02	19.16
Entrenchment Ratio		2.17			1.70	1.67		1.63	1.40	1.80		2.20	1.70	1.85	1.86	1.97
Bank Height Ratio		1.83			1.00	1.19		1.38		1.00			1.00	1.00	1.00	1.00
d50 (mm)																
Pattern						•										•
Channel Beltwidth (ft)		N/A				N/A				N/A				N/A		
Radius of Curvature (ft)		N/A				N/A				N/A				N/A		
Rc/Bankfull width (ft/ft)		N/A				N/A				N/A				N/A		
Meander Wavelength (ft)		N/A				N/A				N/A				N/A		
Meander Width Ratio		N/A				N/A				N/A				N/A		
Profile						-										
Riffle Length (ft)													10.20	18.70	16.90	37.20
Riffle Slope (ft/ft)													-0.1400	-0.0660	-0.0649	-0.0330
Pool Length (ft)													2.00	5.70	6.00	12.00
Pool to Pool Spacing (ft)													10.00	37.00	34.00	70.00
Pool Max Depth (ft)									1.70	1.75		1.80	2.16	2.54	2.53	2.94
Substrate and Transport Parameters					<u>.</u>	•							P			
SC% / Sa% / G% / C% / Bo%																
d16 / d35 / d50 / d84 / d95																
Additional Reach Parameters							•						•			
Drainage Area (SM)		0.15			0.15	0.32		0.49		0.15				0.15		
Impervious cover estimate (%)																
Rosgen Classification		Ba				B4a - B4 - Ba				Ba				B4		
BF Velocity (fps)		3.48			3.42	5.11		6.80	4.42	4.71		5.00				
BF Discharge (cfs)		18.8			23.90	31.16		38.41	19.00	24.50		30.00				
Valley Length		1,541														
Channel Length (ft)		1,618								1,584.45				1,577.53		
Sinuosity		1.05			1.02	1.08		1.14		1.02						

Table 9. Cross-Section Morphology Data Summary UT to Rush Fork Restoration Project: DMS Project No ID. 100068																												
Stream Reach														U	Г3													
			Cross-	section X-1	Riffle)					Cross	s-section X-2	(Pool)					Cross	section X-3	(Riffle)					Cross	-section X-4	(Pool)		
Dimension and substrate	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Based on fixed baseline bankfull elevation																												
Bankfull Elevation (ft) - Based on AB-Bankfull ¹ Area	3063.86	3063.77	3063.87												3028.13	3028.14	3028.13											
Bank Height Ratio_Based on AB Bankfull ¹ Area	1.00	1.10	1.00												1.00	1.00	1.00											
Thalweg Elevation	3062.99	3062.93	3062.90					3045.87	3046.11	3048.03					3027.42	3027.38	3027.24					3007.90	3007.69	3007.63				
LTOB ² Elevation	3063.86	3063.86	3063.86					3048.03	3048.03	3045.9					3028.13	3028.13	3028.13					3010.84	3010.84	3010.84				
LTOB ² Max Depth (ft)	0.87	0.90	1.0					2.16	1.92	2.2					0.71	0.75	0.90					2.94	3.15	3.20				
LTOB ² Cross Sectional Area (ft ²)	4.20	4.96	4.10					11.12	10.36	8.8					3.64	3.66	3.70					15.11	14.74	14.10				
Stream Reach											UT3													1	UT 1 Reach	4		
			Cross-	section X-5	Riffle)					Cross	s-section X-6	ó (Pool)					Cross	section X-7	(Riffle)					Cross	section X-8	(Riffle)		
Dimension and substrate	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Based on fixed baseline bankfull elevation																												
Bankfull Elevation (ft) - Based on AB-Bankfull ¹ Area	2998.75	2998.78	2998.75												2976.51	2976.50	2976.51					2970.37	2970.34	2970.37				
Bank Height Ratio_Based on AB Bankfull ¹ Area	1.00	1.00	1.00												1.00	1.00	1.00					1.00	1.00	1.00				
Thalweg Elevation	2997.84	2997.76	2997.69					2982.50	2982.43	2982.51					2975.44	2975.44	2975.57					2969.02	2969.10	2968.88				
LTOB ² Elevation	2998.75	2998.75	2998.75					2985.03	2985.03	2984.80					2976.51	2976.51	2976.51					2970.37	2970.37	2970.26				
LTOB ² Max Depth (ft)	0.91	0.99	1.10					2.53	2.60	2.50					1.07	1.07	0.90					1.35	1.27	1.50				
LTOB ² Cross Sectional Area (ft ²)	6.23	6.14	5.70					15.51	15.74	15.90					6.11	5.93	5.20					11.01	11.34	12.10				
Stream Reach														UT1 R	each 4													
			Cross-	section X-9	(Pool)					Cross-	section X-1((Riffle)					Cross	section X-1	l (Pool)					Cross-	section X-12	(Riffle)		
Dimension and substrate	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Based on fixed baseline bankfull elevation																												
Bankfull Elevation (ft) - Based on AB-Bankfull ¹ Area								2922.10	2922.01	2922.10												2904.41	2904.34	2904.41				
Bank Height Ratio_Based on AB Bankfull ¹ Area								1.00	1.00	1.00												1.00	1.00	1.00				
Thalweg Elevation	2951.59	2951.74	2951.78					2920.67	2920.48	2920.65					2910.26	2910.27	2909.73					2902.81	2902.80	2902.91				
LTOB ² Elevation	2954.14	2954.14	2954.07					2922.10	2922.10	2922.10					2913.15	2913.15	2913.09					2904.41	2904.41	2904.65				
LTOB ² Max Depth (ft)	2.55	2.40	2.40					1.43	1.62	1.40					2.89	2.88	3.40					1.60	1.61	1.50				
LTOB ² Cross Sectional Area (ft ²)	27.56	25.75	25.30					14.50	15.28	14.50					31.24	30.05	32.60					14.33	15.37	13.60				

Table 9. Cross-Section Morphology Data Summary

Table 9. Cross-Section Morphology Data Summary																												
UT to Rush Fork Restoration Project: DMS Project No ID. 100068																												
Stream Reach			τ	UT1 Reach	1						UT1 Reach	2									UT1 I	Reach 3						
			Cross-	section X-13	3 (Pool)					Cross-	section X-14	(Riffle)					Cross-	section X-15	(Riffle)					Cross-	section X-1	ó (Pool)		
Dimension and substrate	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Based on fixed baseline bankfull elevation																												i T
Bankfull Elevation (ft) - Based on AB-Bankfull ¹ Area								3025.48	3025.50	3025.48					3008.35	3008.34	3008.35											i T
Bank Height Ratio_Based on AB Bankfull ¹ Area								1.00	1.00	1.00					1.00	1.00	1.00											1
Thalweg Elevation	3049.01	3049.97	3049.66					3024.52	3024.65	3024.47					3007.37	3007.33	3007.28					2996.54	2996.38	2996.36			i	í l
LTOB ² Elevation	3051.49	3051.49	3051.49					3025.48	3025.48	3025.48					3008.35	3008.35	3005.35					2998.87	2998.87	2998.87			i	í l
LTOB ² Max Depth (ft)	2.48	1.52	1.80					0.96	0.83	1.00					0.98	1.02	1.10					2.33	2.49	2.50				1
LTOB ² Cross Sectional Area (ft ²)	12.13	10.64	11.78					5.44	5.29	5.50					6.36	6.48	6.40					12.06	14.14	14.30			i	
Stucom Deach							UT1 D	loooh 3																				

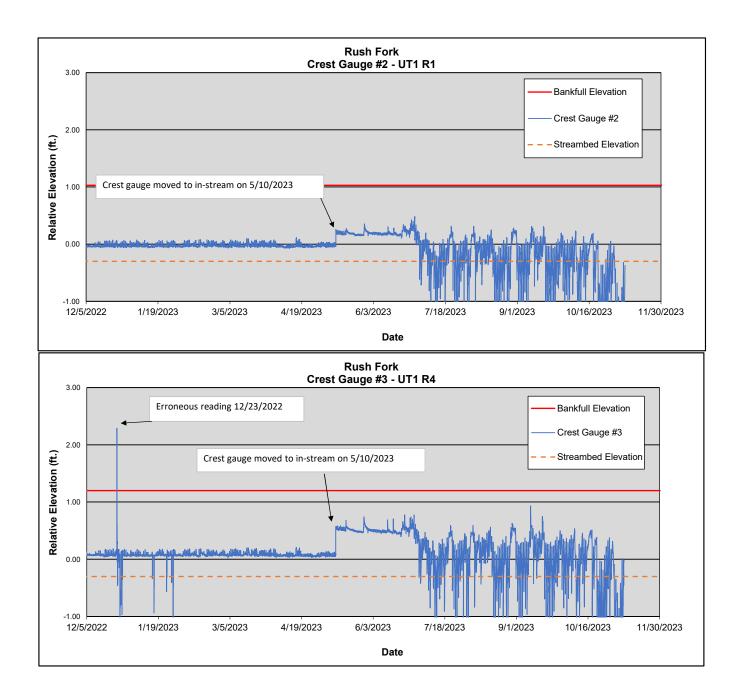
Stream Reach							UT1 R	each 3						
			Cross-s	section X-17	(Pool)					Cross-	section X-18	8 (Pool)		
Dimension and substrate	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Based on fixed baseline bankfull elevation				1						ļ	1			
Bankfull Elevation (ft) - Based on AB-Bankfull ¹ Area				1							1			
Bank Height Ratio_Based on AB Bankfull ¹ Area				1							1			
Thalweg Elevation	2984.29	2984.76	2984.85	1				2973.48	2973.43	2973.50	1			
LTOB ² Elevation	2986.75	2986.75	2986.74	1				2976.03	2976.03	2976.03	1			
LTOB ² Max Depth (ft)	2.46	1.99	1.90	1				2.55	2.60	2.50	1			
LTOB ² Cross Sectional Area (ft ²)	17.60	15.99	19.10	1				17.29	17.10	16.50	1			

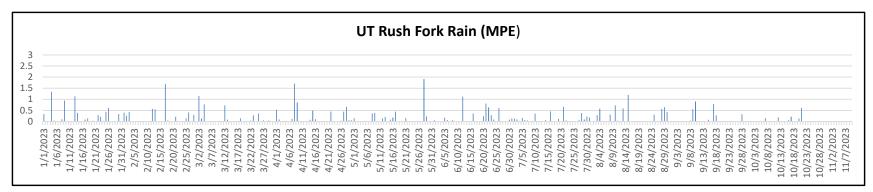
The above morphology parameters reflect the 2018 guidance that arose from the mitigation technical workgroup consisting of DMS, the IRT and industry mitigation providers/practitioners. The outcome resulted in the focus on three primary morphological parameters of interest for the purposes of tracking channel change moving forward. They are the bank height ratio using a constant As-built bankfull area and the cross sectional area and max depth based on each years low top of bank. These are calculated as follows:

1 - Bank Height Ratio (BHR) takes the As-built bankful area as the basis for adjusting each subsequent years bankfull elevation. For example if the As-built bankfull area was 10 ft2, then the MY1 bankfull elevation would be adjusted until the calculated bankfull area within the MY1 cross section survey = 10 ft2. The BHR would then be calculated with the difference between the low top of bank (LTOB) elevation for MY1 and the thalweg elevation for MY1 in the numerator with the difference between the MY1 bankfull elevation and the MY1 thalweg elevation in the denominator. This same process is then carried out in each successive year.

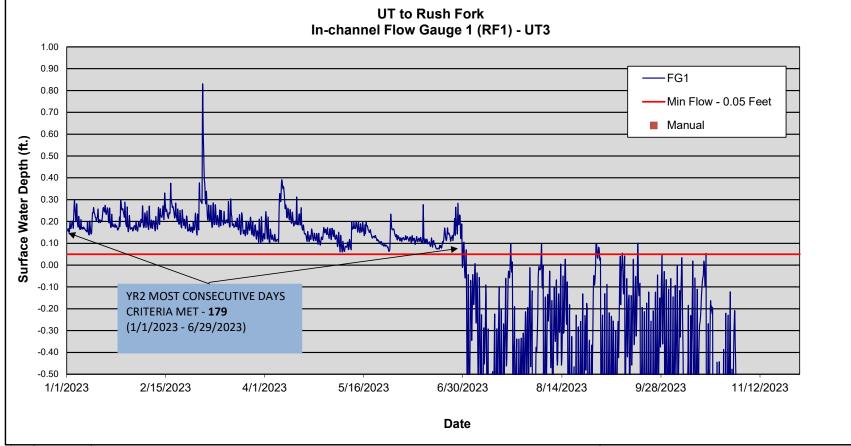
2 - LTOB Area and Max depth - These are based on the LTOB elevation for each years survey (The same elevation used for the LTOB in the BHR calculation). Area below the LTOB elevation will be used and tracked for each year as above. The difference between the LTOB elevation and the thalweg elevation (same as in the BHR calculation) will be recroded and tracked above as LTOB max depth.

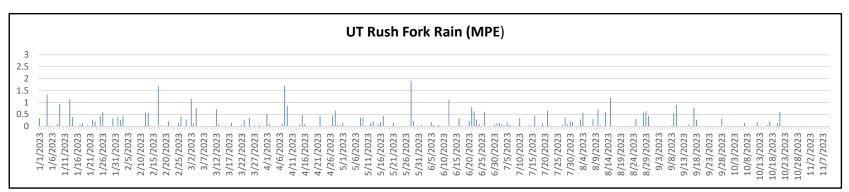
APPENDIX E

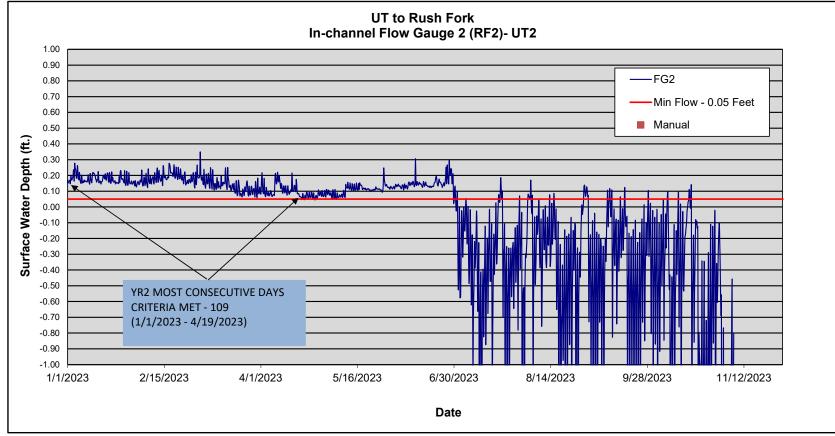

Hydrologic Data


Table 10. Verification of Bankfull EventsUT to Rush Fork Stream Mitigation Project - NCDMS Project No. 100068

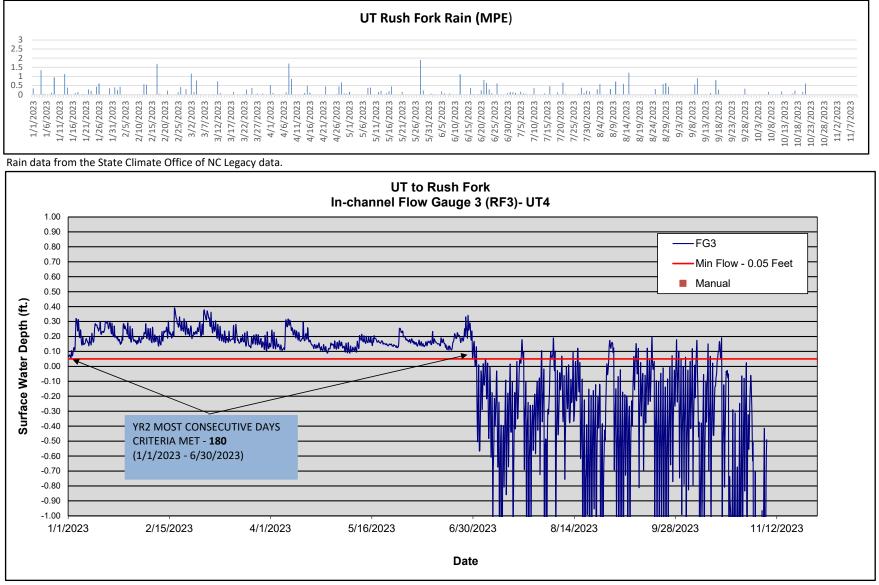
Date of Data Collection	UT3 Crest Gauge #1	UT1 R1 Crest Gauge #2	UT1 R4 Crest Gauge #3	Date of Bankfull Event Occurrence	Method of Data Collection
		Year 1 Monito	oring (2022)		
11/29/2022	NA	NA	NA	NA	Continuous Stage Recorder
		Year 2 Monito	oring (2023)		
5/10/2023	NA	NA	NA	NA	Continuous Stage Recorder

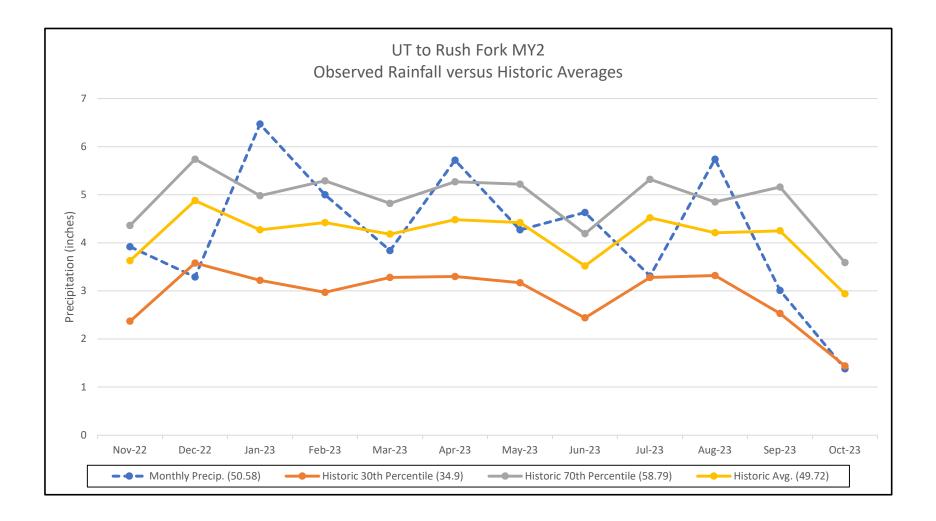

Note: Crest gauge readings were corroborated with associated spikes in the automated Continuous Stage Recorder (see graph in Appendix E) and/or with photographs (Appendix B).


Rain data from the State Climate Office of NC Legacy data.


*Surface water flow is estimated to have occurred when the pressure transducer reading is equal to or above 0.05 feet in depth.

MICHAEL BAKER ENGINEERING, INC.


UT to RUSH FORKMITIGATION PROJECT (DMS PROJECT NO. ID 100068) MONITORING YEAR 2, 2023


Rain data from the State Climate Office of NC Legacy data.

*Surface water flow is estimated to have occurred when the pressure transducer reading is equal to or above 0.05 feet in depth.

*Surface water flow is estimated to have occurred when the pressure transducer reading is equal to or above 0.05 feet in depth.

		M	ost Consecuti	ve Days Meet	ing Criteria ¹				-	Cumulative 1	Days Meetii	ng Criteria ²		
Flow Gauge ID	Year 1 (2022)	Year 2 (2023)	Year 3 (2024)	Year 4 (2025)	Year 5 (2026)	Year 6 (2027)	Year 7 (2028)	Year 1 (2022)	Year 2 (2023)	Year 3 (2024)	Year 4 (2025)	Year 5 (2026)	Year 6 (2027)	Year 7 (2028)
					Flow G	auges (Ins	talled Mar	ch, 2022)						
RF1	152.0	179.0						219.0	179.0					
RF2	266.0	109.0						266.0	177.0					
RF3	104.0	180.0						116.0	183.0					
Notes:														
¹ Indicates the number	r of consecutive	e days within th	e monitoring ye	ear where flow v	vas measured.									
² Indicates the number	r of cumulative	days within the	e monitoring ye	ar where flow w	vas measured.									
Success criteria will i	nclude 30 days	of consecutive	baseflow for m	onitoring gauge	es during a norm	nal rainfall ye	ar.							
Surface water flow is	estimated to ha	ave occurred w	hen the pressure	e transducer read	ling is equal to	or above 0.05	feet in depth.							

DATA IN THIS SHEET IS ENTERED MANUALLY TO AVOID YEAR TO YEAR TYPOS

APPENDIX F

Correspondence

From:	York, Jason
Sent:	Wednesday, December 20, 2023 3:33 PM
То:	annecollier@bellsouth.net
Subject:	UT to Rush Fork Mitigation Project, Haywood County NC

To Anne Collier,

My name is Jason York. I work with Michael Baker Intl. and Micky Clemmons. I am responsible for monitoring the stream mitigation project, UT to Rush Fork, on your property in Haywood County, NC. I hope you are enjoying this holiday season. I am writing to inform you of a small encroachment of the agreed upon conservation easement boundary on this project. I understand that you lease farming rights on this property to a farmer who runs cattle and cuts hay. There is a small area on the western portion of the property where the conservation easement boundary runs close to the tree line, making it difficult to drive a tractor around the easement boundary. It is obvious that a tractor or other machine has been driven through the conservation easement in violation of the agreement. We will need to come up with a solution so that the farmer can drive the equipment around the easement without going over the boundaries of the project. My suggestion is that we remove a few trees, 2 or 3, which would allow them to drive around the boundary and still allow them to do their work. I am happy to discuss this option with the farmer and would be happy to help them with the labor to make this happen. I am also open to any other suggestions you may have. If you have questions or would like to discuss this in more detail please contact me at 828-380-0118 or respond to this email. This is not a big issue and it can be easily resolved. Thank you for participating in this project with us.

The black line represents the path of the tractor.

Sincerely, Jason York

Jason York | Environmental Scientist, Macroinvertebrate Lab Supervisor 797 Haywood Road, Suite 201 | Asheville, NC 28806 | [O] 828-412-6101 | [M] 828-380-0118

jason.york@mbakerintl.com | www.MBakerintl.com

a la la sete	And the state of the state of the	terrore colors, block a second	terrore colors, block a second	harring a state of his to be added

Michael Baker

Michael Baker Intl. 797 Haywood Rd. Suite 201 Asheville, NC 28806

January 8, 2024

To Anne Collier,

My name is Jason York. I work with Michael Baker Intl. and Micky Clemmons. I am responsible for monitoring the stream mitigation project, UT to Rush Fork, on your property in Haywood County, NC. I hope you enjoyed the holiday season. I am writing to inform you of a small encroachment of the agreed upon conservation easement boundary on this project. I understand that you lease farming rights on this property to a farmer who runs cattle and cuts hay. There is a small area on the western portion of the property where the conservation easement boundary runs close to the tree line, making it difficult to drive a tractor around the easement boundary. It is obvious that a tractor or other machine has been driven through the conservation easement in violation of the agreement. We will need to come up with a solution so that the farmer can drive the equipment around the easement without going over the boundaries of the project. My suggestion is that we remove a few trees, 2 or 3, which would allow them to drive around the boundary and still allow them to do their work. I am happy to discuss this option with the farmer and would be happy to help them with the labor to make this happen. I am also open to any other suggestions you may have. If you have questions or would like to discuss this in more detail please contact me at 828-380-0118 or respond to this letter. This is not a big issue and it can be easily resolved. Thank you for participating in this project with us.

The black line represents the path of the tractor.

Michael Baker

We Make a Difference

Sincerely,

Jason Gork

Jason York